Cargando…
Automatic Cardiopulmonary Endurance Assessment: A Machine Learning Approach Based on GA-XGBOOST
Objective: Among various assessment paradigms, the cardiopulmonary exercise test (CPET) provides rich evidence as part of the cardiopulmonary endurance (CPE) assessment. However, methods and strategies for interpreting CPET results are not in agreement. The purpose of this study is to validate the p...
Autores principales: | Deng, Jia, Fu, Yan, Liu, Qi, Chang, Le, Li, Haibo, Liu, Shenglin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9600669/ https://www.ncbi.nlm.nih.gov/pubmed/36292227 http://dx.doi.org/10.3390/diagnostics12102538 |
Ejemplares similares
-
Prediction of Greenhouse Tomato Crop Evapotranspiration Using XGBoost Machine Learning Model
por: Ge, Jiankun, et al.
Publicado: (2022) -
A Machine Learning Approach Using XGBoost Predicts Lung Metastasis in Patients with Ovarian Cancer
por: Yuan, Yufei, et al.
Publicado: (2022) -
Machine learning–XGBoost analysis of language networks to classify patients with epilepsy
por: Torlay, L., et al.
Publicado: (2017) -
XGBoost Machine Learning Algorithm for Prediction of Outcome in Aneurysmal Subarachnoid Hemorrhage
por: Wang, Ruoran, et al.
Publicado: (2022) -
XGBoost based machine learning approach to predict the risk of fall in older adults using gait outcomes
por: Noh, Byungjoo, et al.
Publicado: (2021)