Cargando…

Plakoglobin and High-Mobility Group Box 1 Mediate Intestinal Epithelial Cell Apoptosis Induced by Clostridioides difficile TcdB

Clostridioides difficile infection (CDI) is the leading cause of antibiotic-associated intestinal disease, resulting in severe diarrhea and fatal pseudomembranous colitis. TcdB, one of the essential virulence factors secreted by this bacterium, induces host cell apoptosis through a poorly understood...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Yingxue, Xu, Wei, Ren, Yutian, Cheung, Hung-Chi, Huang, Panpan, Kaur, Guneet, Kuo, Chih-Jung, McDonough, Sean P., Fubini, Susan L., Lipkin, Stephen M., Deng, Xin, Chang, Yung-Fu, Huang, Linfeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9600731/
https://www.ncbi.nlm.nih.gov/pubmed/36043787
http://dx.doi.org/10.1128/mbio.01849-22
Descripción
Sumario:Clostridioides difficile infection (CDI) is the leading cause of antibiotic-associated intestinal disease, resulting in severe diarrhea and fatal pseudomembranous colitis. TcdB, one of the essential virulence factors secreted by this bacterium, induces host cell apoptosis through a poorly understood mechanism. Here, we performed an RNA interference (RNAi) screen customized to Caco-2 cells, a cell line model of the intestinal epithelium, to discover host factors involved in TcdB-induced apoptosis. We identified plakoglobin, also known as junction plakoglobin (JUP) or γ-catenin, a member of the catenin family, as a novel host factor and a previously known cell death-related chromatin factor, high-mobility group box 1 (HMGB1). Disruption of those host factors by RNAi and CRISPR resulted in resistance of cells to TcdB-mediated and mitochondrion-dependent apoptosis. JUP was redistributed from adherens junctions to the mitochondria and colocalized with the antiapoptotic factor Bcl-X(L). JUP proteins could permeabilize the mitochondrial membrane, resulting in the release of cytochrome c. Our results reveal a novel role of JUP in targeting the mitochondria to promote the mitochondrial apoptotic pathway. Treatment with glycyrrhizin, an HMGB1 inhibitor, resulted in significantly increased resistance to TcdB-induced epithelial damage in cultured cells and a mouse ligated colon loop model. These findings demonstrate the critical roles of JUP and HMGB1 in TcdB-induced epithelial cell apoptosis.