Cargando…

The Role of ctDNA in Gastric Cancer

SIMPLE SUMMARY: DNA release from tumour cells (call circulating tumour DNA) into the blood stream can be found in patients with gastric cancer through a blood test call a liquid biopsy. This less invasive test can assess the genetic make-up of tumours to provide important information on the mechanis...

Descripción completa

Detalles Bibliográficos
Autores principales: Mencel, Justin, Slater, Susanna, Cartwright, Elizabeth, Starling, Naureen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9600786/
https://www.ncbi.nlm.nih.gov/pubmed/36291888
http://dx.doi.org/10.3390/cancers14205105
Descripción
Sumario:SIMPLE SUMMARY: DNA release from tumour cells (call circulating tumour DNA) into the blood stream can be found in patients with gastric cancer through a blood test call a liquid biopsy. This less invasive test can assess the genetic make-up of tumours to provide important information on the mechanisms of cancer development, identify mutations which can be targeted with drugs and could be used to screen for patients with gastric cancer. This article will review the current and future uses of liquid biopsies in gastric cancer. ABSTRACT: Circulating tumour DNA (ctDNA) has potential applications in gastric cancer (GC) with respect to screening, the detection of minimal residual disease (MRD) following curative surgery, and in the advanced disease setting for treatment decision making and therapeutic monitoring. It can provide a less invasive and convenient method to capture the tumoural genomic landscape compared to tissue-based next-generation DNA sequencing (NGS). In addition, ctDNA can potentially overcome the challenges of tumour heterogeneity seen with tissue-based NGS. Although the evidence for ctDNA in GC is evolving, its potential utility is far reaching and may shape the management of this disease in the future. This article will review the current and future applications of ctDNA in GC.