Cargando…
Automated Detection of Cervical Carotid Artery Calcifications in Cone Beam Computed Tomographic Images Using Deep Convolutional Neural Networks
The aim of this study was to determine if a convolutional neural network (CNN) can be trained to automatically detect and localize cervical carotid artery calcifications (CACs) in CBCT. A total of 56 CBCT studies (15,257 axial slices) were utilized to train, validate, and test the deep learning mode...
Autores principales: | Ajami, Maryam, Tripathi, Pavani, Ling, Haibin, Mahdian, Mina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9600983/ https://www.ncbi.nlm.nih.gov/pubmed/36292226 http://dx.doi.org/10.3390/diagnostics12102537 |
Ejemplares similares
-
Convolutional neural network for automatic maxillary sinus segmentation on cone-beam computed tomographic images
por: Morgan, Nermin, et al.
Publicado: (2022) -
Ameloblastoma with dystrophic calcification: A case report with 3-dimensional cone-beam computed tomographic images of calcification
por: Kang, Byung Cheol, et al.
Publicado: (2020) -
Evaluation of maxillary sinusitis from panoramic radiographs and cone-beam computed tomographic images using a convolutional neural network
por: Serindere, Gozde, et al.
Publicado: (2022) -
Deep convolution neural network for screening carotid calcification in dental panoramic radiographs
por: Amitay, Moshe, et al.
Publicado: (2023) -
Atherosclerotic Calcification Detection: A Comparative Study of Carotid Ultrasound and Cone Beam CT
por: Jashari, Fisnik, et al.
Publicado: (2015)