Cargando…
Automated Caries Screening Using Ensemble Deep Learning on Panoramic Radiographs
Caries prevention is essential for oral hygiene. A fully automated procedure that reduces human labor and human error is needed. This paper presents a fully automated method that segments tooth regions of interest from a panoramic radiograph to diagnose caries. A patient’s panoramic oral radiograph,...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9601088/ https://www.ncbi.nlm.nih.gov/pubmed/37420378 http://dx.doi.org/10.3390/e24101358 |
Sumario: | Caries prevention is essential for oral hygiene. A fully automated procedure that reduces human labor and human error is needed. This paper presents a fully automated method that segments tooth regions of interest from a panoramic radiograph to diagnose caries. A patient’s panoramic oral radiograph, which can be taken at any dental facility, is first segmented into several segments of individual teeth. Then, informative features are extracted from the teeth using a pre-trained deep learning network such as VGG, Resnet, or Xception. Each extracted feature is learned by a classification model such as random forest, k-nearest neighbor, or support vector machine. The prediction of each classifier model is considered as an individual opinion that contributes to the final diagnosis, which is decided by a majority voting method. The proposed method achieved an accuracy of 93.58%, a sensitivity of 93.91%, and a specificity of 93.33%, making it promising for widespread implementation. The proposed method, which outperforms existing methods in terms of reliability, and can facilitate dental diagnosis and reduce the need for tedious procedures. |
---|