Cargando…

Classification of Vascular Hotspots and Micro-Vessel Flow Velocity Waveforms in Low-Grade Squamous Intraepithelial Lesions and HPV Condyloma of the Cervix

To assess hotspot micro-vessel flow velocity waveforms in human papillomavirus (HPV) cervical infections using transvaginal power Doppler ultrasound (TV-PDU) and to explore the associations of these sonographic parameters with HPV condyloma and low-grade squamous intraepithelial lesions (LSIL) of th...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Yi-Cheng, Chen, Ching-Hsuan, Ko, Yi-Li, Yuan, Chiou-Chung, Wang, Peng-Hui, Chu, Woei-Chyn
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9601140/
https://www.ncbi.nlm.nih.gov/pubmed/36292079
http://dx.doi.org/10.3390/diagnostics12102390
Descripción
Sumario:To assess hotspot micro-vessel flow velocity waveforms in human papillomavirus (HPV) cervical infections using transvaginal power Doppler ultrasound (TV-PDU) and to explore the associations of these sonographic parameters with HPV condyloma and low-grade squamous intraepithelial lesions (LSIL) of the cervix. A total of 39 patients with cervical HPV infections with abnormal cytology and colposcopy results (26 cases of LSIL; 13 cases of HPV condyloma) were enrolled to assess the vascular classification of the cervix and micro-vessel flow velocity using TV-PDU before treatment; 40 individuals with a pathologically normal cervix were used as the control group; seven parameters were measured, including vascular grading classification (Class I, Class II, and Class III), lowest pulsatility index (PI), resistance index (RI), peak systolic velocity (PS), end-diastolic velocity (ED), time average maximum velocity (TAMV), and the vascular index (VI = PS/ED). According to vascular classification, most LSILs were class I (69.2%, 18/26), followed by class II (26.9%, 7/26) and class III (3.8%, 1/26). Most HPV condylomas were class I (92.3%, 12/13), and one was class II (7.7%, 1/13). PI, RI, VI (p < 0.0001), and the PSs (p < 0.05) were significantly lower in these cases than in the controls. The ED and TAMV were not significantly different between the patients and controls (p = 0.4985 and p = 0.1564). No sonographic parameter was significantly different between LSIL and HPV condyloma. The mean PI, RI, and VI were significantly lower in LSIL than in the controls. For HPV condyloma, a PI of 1.07 had an 84.6% sensitivity, 85.0% specificity, and an AUC of 88.8%; for LSIL, a PI of 1.08 had a 100% sensitivity, 85% specificity, and an AUC of 94.2%; for HPV infection (HPV condyloma + LSIL), a PI of 1.08 had a 94.9% sensitivity, 85% specificity, and an AUC of 92.4%. Hotspot vascular classification and micro-vessel flow velocity waveforms may provide a potential practical method for the auxiliary diagnosis of cervical HPV infection. The PI may represent a valuable index for distinguishing the micro-vessel flow velocity waveforms in LSIL and HPV condyloma. Since the case numbers were limited in the current study, further validation is needed.