Cargando…
The Value of Deep Learning Image Reconstruction in Improving the Quality of Low-Dose Chest CT Images
This study aimed to evaluate the value of the deep learning image reconstruction (DLIR) algorithm (GE Healthcare’s TrueFidelity™) in improving the image quality of low-dose computed tomography (LDCT) of the chest. First, we retrospectively extracted raw data of chest LDCT from 50 patients and recons...
Autores principales: | Jiang, Jiu-Ming, Miao, Lei, Liang, Xin, Liu, Zhuo-Heng, Zhang, Li, Li, Meng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9601258/ https://www.ncbi.nlm.nih.gov/pubmed/36292249 http://dx.doi.org/10.3390/diagnostics12102560 |
Ejemplares similares
-
Image quality improvement in low‐dose chest CT with deep learning image reconstruction
por: Tian, Qian, et al.
Publicado: (2022) -
Effectiveness of deep learning reconstruction on standard to ultra-low-dose high-definition chest CT images
por: Hamabuchi, Nayu, et al.
Publicado: (2023) -
Image quality assessment of pediatric chest and abdomen CT by deep learning reconstruction
por: Yoon, Haesung, et al.
Publicado: (2021) -
Emphysema Quantification Using Ultra-Low-Dose Chest CT: Efficacy of Deep Learning-Based Image Reconstruction
por: Yeom, Jeong-A, et al.
Publicado: (2022) -
Validation of Deep-Learning Image Reconstruction for Low-Dose Chest Computed Tomography Scan: Emphasis on Image Quality and Noise
por: Kim, Joo Hee, et al.
Publicado: (2021)