Cargando…
Bounds for Coding Theory over Rings
Coding theory where the alphabet is identified with the elements of a ring or a module has become an important research topic over the last 30 years. It has been well established that, with the generalization of the algebraic structure to rings, there is a need to also generalize the underlying metr...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9601303/ https://www.ncbi.nlm.nih.gov/pubmed/37420493 http://dx.doi.org/10.3390/e24101473 |
_version_ | 1784817030135808000 |
---|---|
author | Gassner, Niklas Greferath, Marcus Rosenthal, Joachim Weger, Violetta |
author_facet | Gassner, Niklas Greferath, Marcus Rosenthal, Joachim Weger, Violetta |
author_sort | Gassner, Niklas |
collection | PubMed |
description | Coding theory where the alphabet is identified with the elements of a ring or a module has become an important research topic over the last 30 years. It has been well established that, with the generalization of the algebraic structure to rings, there is a need to also generalize the underlying metric beyond the usual Hamming weight used in traditional coding theory over finite fields. This paper introduces a generalization of the weight introduced by Shi, Wu and Krotov, called overweight. Additionally, this weight can be seen as a generalization of the Lee weight on the integers modulo 4 and as a generalization of Krotov’s weight over the integers modulo 2(s) for any positive integer s. For this weight, we provide a number of well-known bounds, including a Singleton bound, a Plotkin bound, a sphere-packing bound and a Gilbert–Varshamov bound. In addition to the overweight, we also study a well-known metric on finite rings, namely the homogeneous metric, which also extends the Lee metric over the integers modulo 4 and is thus heavily connected to the overweight. We provide a new bound that has been missing in the literature for homogeneous metric, namely the Johnson bound. To prove this bound, we use an upper estimate on the sum of the distances of all distinct codewords that depends only on the length, the average weight and the maximum weight of a codeword. An effective such bound is not known for the overweight. |
format | Online Article Text |
id | pubmed-9601303 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96013032022-10-27 Bounds for Coding Theory over Rings Gassner, Niklas Greferath, Marcus Rosenthal, Joachim Weger, Violetta Entropy (Basel) Article Coding theory where the alphabet is identified with the elements of a ring or a module has become an important research topic over the last 30 years. It has been well established that, with the generalization of the algebraic structure to rings, there is a need to also generalize the underlying metric beyond the usual Hamming weight used in traditional coding theory over finite fields. This paper introduces a generalization of the weight introduced by Shi, Wu and Krotov, called overweight. Additionally, this weight can be seen as a generalization of the Lee weight on the integers modulo 4 and as a generalization of Krotov’s weight over the integers modulo 2(s) for any positive integer s. For this weight, we provide a number of well-known bounds, including a Singleton bound, a Plotkin bound, a sphere-packing bound and a Gilbert–Varshamov bound. In addition to the overweight, we also study a well-known metric on finite rings, namely the homogeneous metric, which also extends the Lee metric over the integers modulo 4 and is thus heavily connected to the overweight. We provide a new bound that has been missing in the literature for homogeneous metric, namely the Johnson bound. To prove this bound, we use an upper estimate on the sum of the distances of all distinct codewords that depends only on the length, the average weight and the maximum weight of a codeword. An effective such bound is not known for the overweight. MDPI 2022-10-16 /pmc/articles/PMC9601303/ /pubmed/37420493 http://dx.doi.org/10.3390/e24101473 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Gassner, Niklas Greferath, Marcus Rosenthal, Joachim Weger, Violetta Bounds for Coding Theory over Rings |
title | Bounds for Coding Theory over Rings |
title_full | Bounds for Coding Theory over Rings |
title_fullStr | Bounds for Coding Theory over Rings |
title_full_unstemmed | Bounds for Coding Theory over Rings |
title_short | Bounds for Coding Theory over Rings |
title_sort | bounds for coding theory over rings |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9601303/ https://www.ncbi.nlm.nih.gov/pubmed/37420493 http://dx.doi.org/10.3390/e24101473 |
work_keys_str_mv | AT gassnerniklas boundsforcodingtheoryoverrings AT greferathmarcus boundsforcodingtheoryoverrings AT rosenthaljoachim boundsforcodingtheoryoverrings AT wegervioletta boundsforcodingtheoryoverrings |