Cargando…
The Impact of Temporal Changes in Irradiated nMAG Polymer Gels on Their Applicability in Small Field Dosimetry in Radiotherapy
As advanced radiotherapy techniques progress to deliver a high absorbed dose to the target volume while minimizing the dose to normal tissues using intensity-modulated beams, arcs or stereotactic radiosurgery, new challenges occur to assure that the high treatment dose is delivered homogeneously to...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9601347/ https://www.ncbi.nlm.nih.gov/pubmed/36286130 http://dx.doi.org/10.3390/gels8100629 |
Sumario: | As advanced radiotherapy techniques progress to deliver a high absorbed dose to the target volume while minimizing the dose to normal tissues using intensity-modulated beams, arcs or stereotactic radiosurgery, new challenges occur to assure that the high treatment dose is delivered homogeneously to the tumor. Small irradiation field sizes (≤1 cm(2)) that tightly conform to precise target regions and allow for the deliverance of doses with a high therapeutic ratio, are of particular interest. However, the small field dosimetry using conventional dosimeters is limited by the relative large size of the detector. Radiation-sensitive polymer gels have the potential to meet this dosimetry challenge due to their almost unlimited ability in resolving three-dimensional dose distributions of any shape and makes them unique and suitable for the evaluation of dose profiles and the verification of complex doses. In this work, dose distributions in nMAG gels that have been irradiated to different doses by applying a 6 MV FFF photon beam collimated to 1 cm(2), were analyzed and the dose profiles were evaluated by applying a gamma passing rate criteria of 3%/3 mm and considering different post-irradiation time intervals between the irradiation and the gels read out process. X-ray CT and NMR imaging procedures were used for the dose evaluation. It was found that the shape and uniformity of the dose profiles were changing due to post-irradiation polymerization and gelation processes, indicating time dependent growing uniformity which was better expressed for the higher delivered doses. It was estimated that in order to obtain acceptably symmetric small field dose profiles, a longer post-irradiation time is needed for getting the full scope of the polymerization as compared with the recently recommended 24 h period between irradiation and the read out processes of the dose gels. An estimated overall uncertainty (double standard deviation, 95% confidence level) of 3.66% was achieved by applying R2 measurements (NMR read out), and a 3.81–applying X-ray CT read out for 12 Gy irradiated gels 56 h post-irradiation. An increasing tendency for the uncertainty was observed with a decreasing post-irradiation time. A gamma passing rate of 90.3% was estimated for the 12 Gy irradiated gels and, 56 h post-irradiation, the X-ray CT evaluated gels as well as a gamma passing rate of 92.7% was obtained for the NMR evaluated gels applying a 3%/3 mm passing criteria. |
---|