Cargando…
Hypercontractive Inequalities for the Second Norm of Highly Concentrated Functions, and Mrs. Gerber’s-Type Inequalities for the Second Rényi Entropy
Let [Formula: see text] , [Formula: see text] , be the noise operator acting on functions on the boolean cube [Formula: see text]. Let f be a distribution on [Formula: see text] and let [Formula: see text]. We prove tight Mrs. Gerber-type results for the second Rényi entropy of [Formula: see text] w...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9601360/ https://www.ncbi.nlm.nih.gov/pubmed/37420395 http://dx.doi.org/10.3390/e24101376 |
Sumario: | Let [Formula: see text] , [Formula: see text] , be the noise operator acting on functions on the boolean cube [Formula: see text]. Let f be a distribution on [Formula: see text] and let [Formula: see text]. We prove tight Mrs. Gerber-type results for the second Rényi entropy of [Formula: see text] which take into account the value of the [Formula: see text] Rényi entropy of f. For a general function f on [Formula: see text] we prove tight hypercontractive inequalities for the [Formula: see text] norm of [Formula: see text] which take into account the ratio between [Formula: see text] and [Formula: see text] norms of f. |
---|