Cargando…

Identification of a novel necroptosis-associated miRNA signature for predicting the prognosis in head and neck squamous cell carcinoma

Head and neck squamous cell carcinoma (HNSCC) is one of the most aggressive malignancies that have a poor prognosis. Necroptosis has been demonstrated in recent years to be a form of inflammatory cell death occurring in multicellular organism, which plays complex roles in cancer. However, the expres...

Descripción completa

Detalles Bibliográficos
Autores principales: Guan, Jiezhong, Liu, Xinyu, Wang, Kang, Jia, Yiqun, Yang, Bo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: De Gruyter 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9601379/
https://www.ncbi.nlm.nih.gov/pubmed/36349193
http://dx.doi.org/10.1515/med-2022-0575
Descripción
Sumario:Head and neck squamous cell carcinoma (HNSCC) is one of the most aggressive malignancies that have a poor prognosis. Necroptosis has been demonstrated in recent years to be a form of inflammatory cell death occurring in multicellular organism, which plays complex roles in cancer. However, the expression of necroptosis-related miRNAs and genes in HNSCC and their correlations with prognosis remain unclear. In this study, R software was used to screen differentially expressed miRNAs downloaded from The Cancer Genome Atlas. A prognostic model containing six necroptosis-related miRNAs (miR-141-3p, miR-148a-3p, miR-331-3p, miR-543, miR-425-5p, and miR-7-5p) was generated, whose risk score was validated as an independent prognostic factor for HNSCC. Target genes of the key miRNAs were obtained from TargetScan, miRDB, and miRTarBase, and 193 genes in the intersection of the three databases were defined as consensus genes. Kyoto Encyclopedia of Genes and Genomes and Gene Ontology analyses indicated that the composition of the tumor microenvironment as well as specific pathways may be closely related to necroptosis in HNSCC. Nine key genes were also obtained by the MCODE and cytoHubba plug-ins of Cytoscape: PIK3CD, NRAS, PTK2, IRS2, IRS1, PARP1, KLF4, SMAD2, and DNMT1. A prognostic model formed by the key gene was also established, which can efficiently predict the overall survival of HNSCC patients. In conclusion, necroptosis-related miRNAs and genes play important roles in tumor development and metastasis and can be used to predict the prognosis of HNSCC.