Cargando…
Multi-Task Learning and Improved TextRank for Knowledge Graph Completion
Knowledge graph completion is an important technology for supplementing knowledge graphs and improving data quality. However, the existing knowledge graph completion methods ignore the features of triple relations, and the introduced entity description texts are long and redundant. To address these...
Autores principales: | Tian, Hao, Zhang, Xiaoxiong, Wang, Yuhan, Zeng, Daojian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9601466/ https://www.ncbi.nlm.nih.gov/pubmed/37420516 http://dx.doi.org/10.3390/e24101495 |
Ejemplares similares
-
Automatic Text Summarization for Public Health WeChat Official Accounts Platform Base on Improved TextRank
por: Cheng, Zixuan, et al.
Publicado: (2022) -
Retracted: Automatic Text Summarization for Public Health WeChat Official Accounts Platform Base on Improved TextRank
por: Environmental and Public Health, Journal of
Publicado: (2023) -
TextRank Keyword Extraction Algorithm Using Word Vector Clustering Based on Rough Data-Deduction
por: Zhou, Ning, et al.
Publicado: (2022) -
Text-Graph Enhanced Knowledge Graph Representation Learning
por: Hu, Linmei, et al.
Publicado: (2021) -
Health-Aware Food Recommendation Based on Knowledge Graph and Multi-Task Learning
por: Chen, Yi, et al.
Publicado: (2023)