Cargando…
Fault Diagnosis of Rolling Bearings Based on WPE by Wavelet Decomposition and ELM
The fault diagnosis classification method based on wavelet decomposition and weighted permutation entropy (WPE) by the extreme learning machine (ELM) is proposed to address the complexity and non-smoothness of rolling bearing vibration signals. The wavelet decomposition based on ‘db3’ is used to dec...
Autores principales: | Xi, Caiping, Gao, Zhibo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9601506/ https://www.ncbi.nlm.nih.gov/pubmed/37420443 http://dx.doi.org/10.3390/e24101423 |
Ejemplares similares
-
An AVMD-DBN-ELM Model for Bearing Fault Diagnosis
por: Lei, Xue, et al.
Publicado: (2022) -
Rolling Bearing Fault Diagnosis Based on Successive Variational Mode Decomposition and the EP Index
por: Guo, Yuanjing, et al.
Publicado: (2022) -
Improved Dynamic Mode Decomposition and Its Application to Fault Diagnosis of Rolling Bearing
por: Dang, Zhang, et al.
Publicado: (2018) -
Simultaneously Low Rank and Group Sparse Decomposition for Rolling Bearing Fault Diagnosis
por: Zheng, Kai, et al.
Publicado: (2020) -
Negentropy Spectrum Decomposition and Its Application in Compound Fault Diagnosis of Rolling Bearing
por: Xu, Yonggang, et al.
Publicado: (2019)