Cargando…

First Digits’ Shannon Entropy

Related to the letters of an alphabet, entropy means the average number of binary digits required for the transmission of one character. Checking tables of statistical data, one finds that, in the first position of the numbers, the digits 1 to 9 occur with different frequencies. Correspondingly, fro...

Descripción completa

Detalles Bibliográficos
Autor principal: Kreiner, Welf Alfred
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9601575/
https://www.ncbi.nlm.nih.gov/pubmed/37420433
http://dx.doi.org/10.3390/e24101413
Descripción
Sumario:Related to the letters of an alphabet, entropy means the average number of binary digits required for the transmission of one character. Checking tables of statistical data, one finds that, in the first position of the numbers, the digits 1 to 9 occur with different frequencies. Correspondingly, from these probabilities, a value for the Shannon entropy H can be determined as well. Although in many cases, the Newcomb–Benford Law applies, distributions have been found where the 1 in the first position occurs up to more than 40 times as frequently as the 9. In this case, the probability of the occurrence of a particular first digit can be derived from a power function with a negative exponent p > 1. While the entropy of the first digits following an NB distribution amounts to H = 2.88, for other data distributions (diameters of craters on Venus or the weight of fragments of crushed minerals), entropy values of 2.76 and 2.04 bits per digit have been found.