Cargando…

Bath Engineering Enhanced Quantum Critical Engines

Driving a quantum system across quantum critical points leads to non-adiabatic excitations in the system. This in turn may adversely affect the functioning of a quantum machine which uses a quantum critical substance as its working medium. Here we propose a bath-engineered quantum engine (BEQE), in...

Descripción completa

Detalles Bibliográficos
Autores principales: B.S, Revathy, Mukherjee, Victor, Divakaran, Uma
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9601589/
https://www.ncbi.nlm.nih.gov/pubmed/37420478
http://dx.doi.org/10.3390/e24101458
Descripción
Sumario:Driving a quantum system across quantum critical points leads to non-adiabatic excitations in the system. This in turn may adversely affect the functioning of a quantum machine which uses a quantum critical substance as its working medium. Here we propose a bath-engineered quantum engine (BEQE), in which we use the Kibble–Zurek mechanism and critical scaling laws to formulate a protocol for enhancing the performance of finite-time quantum engines operating close to quantum phase transitions. In the case of free fermionic systems, BEQE enables finite-time engines to outperform engines operating in the presence of shortcuts to adiabaticity, and even infinite-time engines under suitable conditions, thus showing the remarkable advantages offered by this technique. Open questions remain regarding the use of BEQE based on non-integrable models.