Cargando…
Integrative Histology-Genomic Analysis Predicts Hepatocellular Carcinoma Prognosis Using Deep Learning
Cancer prognosis analysis is of essential interest in clinical practice. In order to explore the prognostic power of computational histopathology and genomics, this paper constructs a multi-modality prognostic model for survival prediction. We collected 346 patients diagnosed with hepatocellular car...
Autores principales: | Hou, Jiaxin, Jia, Xiaoqi, Xie, Yaoqin, Qin, Wenjian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9601633/ https://www.ncbi.nlm.nih.gov/pubmed/36292654 http://dx.doi.org/10.3390/genes13101770 |
Ejemplares similares
-
Deep learning for evaluation of microvascular invasion in hepatocellular carcinoma from tumor areas of histology images
por: Chen, Qiaofeng, et al.
Publicado: (2022) -
An Adaptive Transfer-Learning-Based Deep Cox Neural Network for Hepatocellular Carcinoma Prognosis Prediction
por: Chai, Hua, et al.
Publicado: (2021) -
Deep Learning of Liver Contrast-Enhanced Ultrasound to Predict Microvascular Invasion and Prognosis in Hepatocellular Carcinoma
por: Zhang, Yafang, et al.
Publicado: (2022) -
Histologic Assessment of Intratumoral Lymphoplasmacytic Infiltration Is Useful in Predicting Prognosis of Patients with Hepatocellular Carcinoma
por: Hayashi, Akimasa, et al.
Publicado: (2016) -
Clinical Interpretability of Deep Learning for Predicting Microvascular Invasion in Hepatocellular Carcinoma by Using Attention Mechanism
por: You, Huayu, et al.
Publicado: (2023)