Cargando…
Divergence-Based Locally Weighted Ensemble Clustering with Dictionary Learning and L(2,1)-Norm
Accurate clustering is a challenging task with unlabeled data. Ensemble clustering aims to combine sets of base clusterings to obtain a better and more stable clustering and has shown its ability to improve clustering accuracy. Dense representation ensemble clustering (DREC) and entropy-based locall...
Autores principales: | Xu, Jiaxuan, Wu, Jiang, Li, Taiyong, Nan, Yang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9601663/ https://www.ncbi.nlm.nih.gov/pubmed/37420344 http://dx.doi.org/10.3390/e24101324 |
Ejemplares similares
-
Statistical Interior Tomography via L(1) Norm Dictionary Learning without Assuming an Object Support
por: Wu, Junfeng, et al.
Publicado: (2022) -
KL Divergence-Based Fuzzy Cluster Ensemble for Image Segmentation
por: Wei, Huiqin, et al.
Publicado: (2018) -
Ensemble Dictionary Learning for Single Image Deblurring via Low-Rank Regularization
por: Li, Jinyang, et al.
Publicado: (2019) -
Joint Lp-Norm and L(2,1)-Norm Constrained Graph Laplacian PCA for Robust Tumor Sample Clustering and Gene Network Module Discovery
por: Kong, Xiang-Zhen, et al.
Publicado: (2021) -
R-Norm Entropy and R-Norm Divergence in Fuzzy Probability Spaces
por: Markechová, Dagmar, et al.
Publicado: (2018)