Cargando…
Preparation and Analysis of Two-Dimensional Four-Qubit Entangled States with Photon Polarization and Spatial Path
Entanglement states serve as the central resource for a number of important applications in quantum information science, including quantum key distribution, quantum precision measurement, and quantum computing. In pursuit of more promising applications, efforts have been made to generate entangled s...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9601689/ https://www.ncbi.nlm.nih.gov/pubmed/37420409 http://dx.doi.org/10.3390/e24101388 |
_version_ | 1784817127951171584 |
---|---|
author | Zhao, Jiaqiang Wang, Meijiao Sun, Bing Cao, Lianzhen Yang, Yang Liu, Xia Zhang, Qinwei Lu, Huaixin Driscoll, Kellie Ann |
author_facet | Zhao, Jiaqiang Wang, Meijiao Sun, Bing Cao, Lianzhen Yang, Yang Liu, Xia Zhang, Qinwei Lu, Huaixin Driscoll, Kellie Ann |
author_sort | Zhao, Jiaqiang |
collection | PubMed |
description | Entanglement states serve as the central resource for a number of important applications in quantum information science, including quantum key distribution, quantum precision measurement, and quantum computing. In pursuit of more promising applications, efforts have been made to generate entangled states with more qubits. However, the efficient creation of a high-fidelity multiparticle entanglement remains an outstanding challenge due to the difficulty that increases exponentially with the number of particles. We design an interferometer that is capable of coupling the polarization and spatial paths of photons and prepare 2-D four-qubit GHZ entanglement states. Using quantum state tomography, entanglement witness, and the violation of Ardehali inequality against local realism, the properties of the prepared 2-D four-qubit entangled state are analyzed. The experimental results show that the prepared four-photon system is an entangled state with high fidelity. |
format | Online Article Text |
id | pubmed-9601689 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96016892022-10-27 Preparation and Analysis of Two-Dimensional Four-Qubit Entangled States with Photon Polarization and Spatial Path Zhao, Jiaqiang Wang, Meijiao Sun, Bing Cao, Lianzhen Yang, Yang Liu, Xia Zhang, Qinwei Lu, Huaixin Driscoll, Kellie Ann Entropy (Basel) Article Entanglement states serve as the central resource for a number of important applications in quantum information science, including quantum key distribution, quantum precision measurement, and quantum computing. In pursuit of more promising applications, efforts have been made to generate entangled states with more qubits. However, the efficient creation of a high-fidelity multiparticle entanglement remains an outstanding challenge due to the difficulty that increases exponentially with the number of particles. We design an interferometer that is capable of coupling the polarization and spatial paths of photons and prepare 2-D four-qubit GHZ entanglement states. Using quantum state tomography, entanglement witness, and the violation of Ardehali inequality against local realism, the properties of the prepared 2-D four-qubit entangled state are analyzed. The experimental results show that the prepared four-photon system is an entangled state with high fidelity. MDPI 2022-09-29 /pmc/articles/PMC9601689/ /pubmed/37420409 http://dx.doi.org/10.3390/e24101388 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhao, Jiaqiang Wang, Meijiao Sun, Bing Cao, Lianzhen Yang, Yang Liu, Xia Zhang, Qinwei Lu, Huaixin Driscoll, Kellie Ann Preparation and Analysis of Two-Dimensional Four-Qubit Entangled States with Photon Polarization and Spatial Path |
title | Preparation and Analysis of Two-Dimensional Four-Qubit Entangled States with Photon Polarization and Spatial Path |
title_full | Preparation and Analysis of Two-Dimensional Four-Qubit Entangled States with Photon Polarization and Spatial Path |
title_fullStr | Preparation and Analysis of Two-Dimensional Four-Qubit Entangled States with Photon Polarization and Spatial Path |
title_full_unstemmed | Preparation and Analysis of Two-Dimensional Four-Qubit Entangled States with Photon Polarization and Spatial Path |
title_short | Preparation and Analysis of Two-Dimensional Four-Qubit Entangled States with Photon Polarization and Spatial Path |
title_sort | preparation and analysis of two-dimensional four-qubit entangled states with photon polarization and spatial path |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9601689/ https://www.ncbi.nlm.nih.gov/pubmed/37420409 http://dx.doi.org/10.3390/e24101388 |
work_keys_str_mv | AT zhaojiaqiang preparationandanalysisoftwodimensionalfourqubitentangledstateswithphotonpolarizationandspatialpath AT wangmeijiao preparationandanalysisoftwodimensionalfourqubitentangledstateswithphotonpolarizationandspatialpath AT sunbing preparationandanalysisoftwodimensionalfourqubitentangledstateswithphotonpolarizationandspatialpath AT caolianzhen preparationandanalysisoftwodimensionalfourqubitentangledstateswithphotonpolarizationandspatialpath AT yangyang preparationandanalysisoftwodimensionalfourqubitentangledstateswithphotonpolarizationandspatialpath AT liuxia preparationandanalysisoftwodimensionalfourqubitentangledstateswithphotonpolarizationandspatialpath AT zhangqinwei preparationandanalysisoftwodimensionalfourqubitentangledstateswithphotonpolarizationandspatialpath AT luhuaixin preparationandanalysisoftwodimensionalfourqubitentangledstateswithphotonpolarizationandspatialpath AT driscollkellieann preparationandanalysisoftwodimensionalfourqubitentangledstateswithphotonpolarizationandspatialpath |