Cargando…

Is There a Fourth Law for Non-Ergodic Systems That Do Work to Construct Their Expanding Phase Space?

Substantial grounds exist to doubt the universal validity of the Newtonian Paradigm that requires a pre-stated, fixed phase space. Therefore, the Second Law of Thermodynamics, stated only for fixed phase spaces, is also in doubt. The validity of the Newtonian Paradigm may stop at the onset of evolvi...

Descripción completa

Detalles Bibliográficos
Autor principal: Kauffman, Stuart
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9601704/
https://www.ncbi.nlm.nih.gov/pubmed/37420403
http://dx.doi.org/10.3390/e24101383
Descripción
Sumario:Substantial grounds exist to doubt the universal validity of the Newtonian Paradigm that requires a pre-stated, fixed phase space. Therefore, the Second Law of Thermodynamics, stated only for fixed phase spaces, is also in doubt. The validity of the Newtonian Paradigm may stop at the onset of evolving life. Living cells and organisms are Kantian Wholes that achieve constraint closure, so do thermodynamic work to construct themselves. Evolution constructs an ever-expanding phase space. Thus, we can ask the free energy cost per added degree of freedom. That cost is roughly linear or sublinear in the mass constructed. However, the resulting expansion of the phase space is exponential or even hyperbolic. Thus, the evolving biosphere does thermodynamic work to construct itself into an ever-smaller sub-domain of its ever-expanding phase space at ever less free energy cost per added degree of freedom. The universe is not correspondingly disordered. Entropy, remarkably, really does decrease. A testable implication of this, termed here the Fourth Law of Thermodynamics, is that at constant energy input, the biosphere will construct itself into an ever more localized subregion of its ever-expanding phase space. This is confirmed. The energy input from the sun has been roughly constant for the 4 billion years since life started to evolve. The localization of our current biosphere in its protein phase space is at least 10(–2540). The localization of our biosphere with respect to all possible molecules of CHNOPS comprised of up to 350,000 atoms is also extremely high. The universe has not been correspondingly disordered. Entropy has decreased. The universality of the Second Law fails.