Cargando…
Multi-Task Transformer with Adaptive Cross-Entropy Loss for Multi-Dialect Speech Recognition
At present, most multi-dialect speech recognition models are based on a hard-parameter-sharing multi-task structure, which makes it difficult to reveal how one task contributes to others. In addition, in order to balance multi-task learning, the weights of the multi-task objective function need to b...
Autores principales: | Dan, Zhengjia, Zhao, Yue, Bi, Xiaojun, Wu, Licheng, Ji, Qiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9601745/ https://www.ncbi.nlm.nih.gov/pubmed/37420449 http://dx.doi.org/10.3390/e24101429 |
Ejemplares similares
-
Novel Techniques for Dialectal Arabic Speech Recognition
por: Elmahdy, Mohamed, et al.
Publicado: (2012) -
Cross-Corpus Speech Emotion Recognition Based on Multi-Task Learning and Subdomain Adaptation
por: Fu, Hongliang, et al.
Publicado: (2023) -
Entropy-Argumentative Concept of Computational Phonetic Analysis of Speech Taking into Account Dialect and Individuality of Phonation
por: Kovtun, Viacheslav, et al.
Publicado: (2022) -
Multi-Path and Group-Loss-Based Network for Speech Emotion Recognition in Multi-Domain Datasets
por: Noh, Kyoung Ju, et al.
Publicado: (2021) -
Speech Emotion Recognition Using Convolution Neural Networks and Multi-Head Convolutional Transformer
por: Ullah, Rizwan, et al.
Publicado: (2023)