Cargando…
Re_Trans: Combined Retrieval and Transformer Model for Source Code Summarization
Source code summarization (SCS) is a natural language description of source code functionality. It can help developers understand programs and maintain software efficiently. Retrieval-based methods generate SCS by reorganizing terms selected from source code or use SCS of similar code snippets. Gene...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9601825/ https://www.ncbi.nlm.nih.gov/pubmed/37420392 http://dx.doi.org/10.3390/e24101372 |
Sumario: | Source code summarization (SCS) is a natural language description of source code functionality. It can help developers understand programs and maintain software efficiently. Retrieval-based methods generate SCS by reorganizing terms selected from source code or use SCS of similar code snippets. Generative methods generate SCS via attentional encoder–decoder architecture. However, a generative method can generate SCS for any code, but sometimes the accuracy is still far from expectation (due to the lack of numerous high-quality training sets). A retrieval-based method is considered to have a higher accurac, but usually fails to generate SCS for a source code in the absence of a similar candidate in the database. In order to effectively combine the advantages of retrieval-based methods and generative methods, we propose a new method: Re_Trans. For a given code, we first utilize the retrieval-based method to obtain its most similar code with regard to sematic and corresponding SCS (S_RM). Then, we input the given code and similar code into the trained discriminator. If the discriminator outputs onr, we take S_RM as the result; otherwise, we utilize the generate model, transformer, to generate the given code’ SCS. Particularly, we use AST-augmented (AbstractSyntax Tree) and code sequence-augmented information to make the source code semantic extraction more complete. Furthermore, we build a new SCS retrieval library through the public dataset. We evaluate our method on a dataset of 2.1 million Java code-comment pairs, and experimental results show improvement over the state-of-the-art (SOTA) benchmarks, which demonstrates the effectiveness and efficiency of our method. |
---|