Cargando…

Rényi Cross-Entropy Measures for Common Distributions and Processes with Memory

Two Rényi-type generalizations of the Shannon cross-entropy, the Rényi cross-entropy and the Natural Rényi cross-entropy, were recently used as loss functions for the improved design of deep learning generative adversarial networks. In this work, we derive the Rényi and Natural Rényi differential cr...

Descripción completa

Detalles Bibliográficos
Autores principales: Thierrin, Ferenc Cole, Alajaji, Fady, Linder, Tamás
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9601846/
https://www.ncbi.nlm.nih.gov/pubmed/37420437
http://dx.doi.org/10.3390/e24101417
Descripción
Sumario:Two Rényi-type generalizations of the Shannon cross-entropy, the Rényi cross-entropy and the Natural Rényi cross-entropy, were recently used as loss functions for the improved design of deep learning generative adversarial networks. In this work, we derive the Rényi and Natural Rényi differential cross-entropy measures in closed form for a wide class of common continuous distributions belonging to the exponential family, and we tabulate the results for ease of reference. We also summarise the Rényi-type cross-entropy rates between stationary Gaussian processes and between finite-alphabet time-invariant Markov sources.