Cargando…
Multi-Stage Attentive Network for Motion Deblurring via Binary Cross-Entropy Loss
In this paper, we present the multi-stage attentive network (MSAN), an efficient and good generalization performance convolutional neural network (CNN) architecture for motion deblurring. We build a multi-stage encoder–decoder network with self-attention and use the binary cross-entropy loss to trai...
Autores principales: | Guo, Cai, Chen, Xinan, Chen, Yanhua, Yu, Chuying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9601862/ https://www.ncbi.nlm.nih.gov/pubmed/37420434 http://dx.doi.org/10.3390/e24101414 |
Ejemplares similares
-
Multi-Stage Network for Event-Based Video Deblurring with Residual Hint Attention
por: Kim, Jeongmin, et al.
Publicado: (2023) -
WRA-Net: Wide Receptive Field Attention Network for Motion Deblurring in Crop and Weed Image
por: Yun, Chaeyeong, et al.
Publicado: (2023) -
SlimDeblurGAN-Based Motion Deblurring and Marker Detection for Autonomous Drone Landing
por: Truong, Noi Quang, et al.
Publicado: (2020) -
Combining Motion Compensation with Spatiotemporal Constraint for Video Deblurring
por: Li, Jing, et al.
Publicado: (2018) -
Fast Motion Deblurring Using Sensor-Aided Motion Trajectory Estimation
por: Lee, Eunsung, et al.
Publicado: (2014)