Cargando…

Heterologous Expression of the Lactobacillus sakei Multiple Copper Oxidase to Degrade Histamine and Tyramine at Different Environmental Conditions

Biogenic amines (BAs) are produced by microbial decarboxylation in various foods. Histamine and tyramine are recognized as the most toxic of all BAs. Applying degrading amine enzymes such as multicopper oxidase (MCO) is considered an effective method to reduce BAs in food systems. This study analyze...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Xiaofu, Zhao, Yunsong, Zhang, Sufang, Lin, Xinping, Liang, Huipeng, Chen, Yingxi, Ji, Chaofan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9601898/
https://www.ncbi.nlm.nih.gov/pubmed/37431050
http://dx.doi.org/10.3390/foods11203306
Descripción
Sumario:Biogenic amines (BAs) are produced by microbial decarboxylation in various foods. Histamine and tyramine are recognized as the most toxic of all BAs. Applying degrading amine enzymes such as multicopper oxidase (MCO) is considered an effective method to reduce BAs in food systems. This study analyzed the characterization of heterologously expressed MCO from L. sakei LS. Towards the typical substrate 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), the optimal temperature and pH for recombinant MCO (rMCO) were 25 °C and 3.0, respectively, with the specific enzyme activity of 1.27 U/mg. Then, the effect of different environmental factors on the degrading activity of MCO towards two kinds of BAs was investigated. The degradation activity of rMCO is independent of exogenous copper and mediators. Additionally, the oxidation ability of rMCO was improved for histamine and tyramine with an increased NaCl concentration. Several food matrices could influence the amine-oxidizing activity of rMCO. Although the histamine-degrading activities of rMCO were affected, this enzyme reached a degradation rate of 28.1% in the presence of surimi. Grape juice improved the tyramine degradation activity of rMCO by up to 31.18%. These characteristics of rMCO indicate that this enzyme would be a good candidate for degrading toxic biogenic amines in food systems.