Cargando…

Enhanced Sample Self-Revised Network for Cross-Dataset Facial Expression Recognition

Recently, cross-dataset facial expression recognition (FER) has obtained wide attention from researchers. Thanks to the emergence of large-scale facial expression datasets, cross-dataset FER has made great progress. Nevertheless, facial images in large-scale datasets with low quality, subjective ann...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Xiaolin, Zong, Yuan, Lu, Cheng, Jiang, Xingxun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9601910/
https://www.ncbi.nlm.nih.gov/pubmed/37420495
http://dx.doi.org/10.3390/e24101475
Descripción
Sumario:Recently, cross-dataset facial expression recognition (FER) has obtained wide attention from researchers. Thanks to the emergence of large-scale facial expression datasets, cross-dataset FER has made great progress. Nevertheless, facial images in large-scale datasets with low quality, subjective annotation, severe occlusion, and rare subject identity can lead to the existence of outlier samples in facial expression datasets. These outlier samples are usually far from the clustering center of the dataset in the feature space, thus resulting in considerable differences in feature distribution, which severely restricts the performance of most cross-dataset facial expression recognition methods. To eliminate the influence of outlier samples on cross-dataset FER, we propose the enhanced sample self-revised network (ESSRN) with a novel outlier-handling mechanism, whose aim is first to seek these outlier samples and then suppress them in dealing with cross-dataset FER. To evaluate the proposed ESSRN, we conduct extensive cross-dataset experiments across RAF-DB, JAFFE, CK+, and FER2013 datasets. Experimental results demonstrate that the proposed outlier-handling mechanism can reduce the negative impact of outlier samples on cross-dataset FER effectively and our ESSRN outperforms classic deep unsupervised domain adaptation (UDA) methods and the recent state-of-the-art cross-dataset FER results.