Cargando…
An Optimized Black-Box Adversarial Simulator Attack Based on Meta-Learning
Much research on adversarial attacks has proved that deep neural networks have certain security vulnerabilities. Among potential attacks, black-box adversarial attacks are considered the most realistic based on the the natural hidden nature of deep neural networks. Such attacks have become a critica...
Autores principales: | Chen, Zhiyu, Ding, Jianyu, Wu, Fei, Zhang, Chi, Sun, Yiming, Sun, Jing, Liu, Shangdong, Ji, Yimu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9601915/ https://www.ncbi.nlm.nih.gov/pubmed/37420397 http://dx.doi.org/10.3390/e24101377 |
Ejemplares similares
-
Data-Free Adversarial Perturbations for Practical Black-Box Attack
por: Huan, Zhaoxin, et al.
Publicado: (2020) -
A Distributed Black-Box Adversarial Attack Based on Multi-Group Particle Swarm Optimization
por: Suryanto, Naufal, et al.
Publicado: (2020) -
Beware the Black-Box: On the Robustness of Recent Defenses to Adversarial Examples
por: Mahmood, Kaleel, et al.
Publicado: (2021) -
ABCAttack: A Gradient-Free Optimization Black-Box Attack for Fooling Deep Image Classifiers
por: Cao, Han, et al.
Publicado: (2022) -
Adversarial attacks and adversarial robustness in computational pathology
por: Ghaffari Laleh, Narmin, et al.
Publicado: (2022)