Cargando…

Integration of lncRNAs, Protein-Coding Genes and Pathology Images for Detecting Metastatic Melanoma

Melanoma is a lethal skin disease that develops from moles. This study aimed to integrate multimodal data to predict metastatic melanoma, which is highly aggressive and difficult to treat. The proposed EnsembleSKCM method evaluated the prediction performances of long noncoding RNAs (lncRNAs), protei...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Shuai, Fan, Yusi, Li, Kewei, Zhang, Haotian, Wang, Xi, Ju, Ruofei, Huang, Lan, Duan, Meiyu, Zhou, Fengfeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9602061/
https://www.ncbi.nlm.nih.gov/pubmed/36292801
http://dx.doi.org/10.3390/genes13101916
Descripción
Sumario:Melanoma is a lethal skin disease that develops from moles. This study aimed to integrate multimodal data to predict metastatic melanoma, which is highly aggressive and difficult to treat. The proposed EnsembleSKCM method evaluated the prediction performances of long noncoding RNAs (lncRNAs), protein-coding messenger genes (mRNAs) and pathology images (images) for metastatic melanoma. Feature selection was used to screen for metastatic biomarkers in the lncRNA and mRNA datasets. The integrated EnsembleSKCM model was built based on the weighted results of the lncRNA-, mRNA- and image-based models. EnsembleSKCM achieved 0.9444 in the prediction accuracy of metastatic melanoma and outperformed the single-modal prediction models based on the lncRNA, mRNA and image data. The experimental data suggest the importance of integrating the complementary information from the three data modalities. WGCNA was used to analyze the relationship of molecular-level features and image features, and the results show connections between them. Another cohort was used to validate our prediction.