Cargando…
Integration of lncRNAs, Protein-Coding Genes and Pathology Images for Detecting Metastatic Melanoma
Melanoma is a lethal skin disease that develops from moles. This study aimed to integrate multimodal data to predict metastatic melanoma, which is highly aggressive and difficult to treat. The proposed EnsembleSKCM method evaluated the prediction performances of long noncoding RNAs (lncRNAs), protei...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9602061/ https://www.ncbi.nlm.nih.gov/pubmed/36292801 http://dx.doi.org/10.3390/genes13101916 |
_version_ | 1784817219604054016 |
---|---|
author | Liu, Shuai Fan, Yusi Li, Kewei Zhang, Haotian Wang, Xi Ju, Ruofei Huang, Lan Duan, Meiyu Zhou, Fengfeng |
author_facet | Liu, Shuai Fan, Yusi Li, Kewei Zhang, Haotian Wang, Xi Ju, Ruofei Huang, Lan Duan, Meiyu Zhou, Fengfeng |
author_sort | Liu, Shuai |
collection | PubMed |
description | Melanoma is a lethal skin disease that develops from moles. This study aimed to integrate multimodal data to predict metastatic melanoma, which is highly aggressive and difficult to treat. The proposed EnsembleSKCM method evaluated the prediction performances of long noncoding RNAs (lncRNAs), protein-coding messenger genes (mRNAs) and pathology images (images) for metastatic melanoma. Feature selection was used to screen for metastatic biomarkers in the lncRNA and mRNA datasets. The integrated EnsembleSKCM model was built based on the weighted results of the lncRNA-, mRNA- and image-based models. EnsembleSKCM achieved 0.9444 in the prediction accuracy of metastatic melanoma and outperformed the single-modal prediction models based on the lncRNA, mRNA and image data. The experimental data suggest the importance of integrating the complementary information from the three data modalities. WGCNA was used to analyze the relationship of molecular-level features and image features, and the results show connections between them. Another cohort was used to validate our prediction. |
format | Online Article Text |
id | pubmed-9602061 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96020612022-10-27 Integration of lncRNAs, Protein-Coding Genes and Pathology Images for Detecting Metastatic Melanoma Liu, Shuai Fan, Yusi Li, Kewei Zhang, Haotian Wang, Xi Ju, Ruofei Huang, Lan Duan, Meiyu Zhou, Fengfeng Genes (Basel) Article Melanoma is a lethal skin disease that develops from moles. This study aimed to integrate multimodal data to predict metastatic melanoma, which is highly aggressive and difficult to treat. The proposed EnsembleSKCM method evaluated the prediction performances of long noncoding RNAs (lncRNAs), protein-coding messenger genes (mRNAs) and pathology images (images) for metastatic melanoma. Feature selection was used to screen for metastatic biomarkers in the lncRNA and mRNA datasets. The integrated EnsembleSKCM model was built based on the weighted results of the lncRNA-, mRNA- and image-based models. EnsembleSKCM achieved 0.9444 in the prediction accuracy of metastatic melanoma and outperformed the single-modal prediction models based on the lncRNA, mRNA and image data. The experimental data suggest the importance of integrating the complementary information from the three data modalities. WGCNA was used to analyze the relationship of molecular-level features and image features, and the results show connections between them. Another cohort was used to validate our prediction. MDPI 2022-10-21 /pmc/articles/PMC9602061/ /pubmed/36292801 http://dx.doi.org/10.3390/genes13101916 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Liu, Shuai Fan, Yusi Li, Kewei Zhang, Haotian Wang, Xi Ju, Ruofei Huang, Lan Duan, Meiyu Zhou, Fengfeng Integration of lncRNAs, Protein-Coding Genes and Pathology Images for Detecting Metastatic Melanoma |
title | Integration of lncRNAs, Protein-Coding Genes and Pathology Images for Detecting Metastatic Melanoma |
title_full | Integration of lncRNAs, Protein-Coding Genes and Pathology Images for Detecting Metastatic Melanoma |
title_fullStr | Integration of lncRNAs, Protein-Coding Genes and Pathology Images for Detecting Metastatic Melanoma |
title_full_unstemmed | Integration of lncRNAs, Protein-Coding Genes and Pathology Images for Detecting Metastatic Melanoma |
title_short | Integration of lncRNAs, Protein-Coding Genes and Pathology Images for Detecting Metastatic Melanoma |
title_sort | integration of lncrnas, protein-coding genes and pathology images for detecting metastatic melanoma |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9602061/ https://www.ncbi.nlm.nih.gov/pubmed/36292801 http://dx.doi.org/10.3390/genes13101916 |
work_keys_str_mv | AT liushuai integrationoflncrnasproteincodinggenesandpathologyimagesfordetectingmetastaticmelanoma AT fanyusi integrationoflncrnasproteincodinggenesandpathologyimagesfordetectingmetastaticmelanoma AT likewei integrationoflncrnasproteincodinggenesandpathologyimagesfordetectingmetastaticmelanoma AT zhanghaotian integrationoflncrnasproteincodinggenesandpathologyimagesfordetectingmetastaticmelanoma AT wangxi integrationoflncrnasproteincodinggenesandpathologyimagesfordetectingmetastaticmelanoma AT juruofei integrationoflncrnasproteincodinggenesandpathologyimagesfordetectingmetastaticmelanoma AT huanglan integrationoflncrnasproteincodinggenesandpathologyimagesfordetectingmetastaticmelanoma AT duanmeiyu integrationoflncrnasproteincodinggenesandpathologyimagesfordetectingmetastaticmelanoma AT zhoufengfeng integrationoflncrnasproteincodinggenesandpathologyimagesfordetectingmetastaticmelanoma |