Cargando…
In Situ Synthetic ZIF-8/Carbon Aerogel Composites as Solid-Phase Microextraction Coating for the Detection of Phthalic Acid Esters in Water Samples
In this study, a hybrid composite featuring zeolitic imidazolate framework-8/carbon aerogel (ZIF-8/CA) was synthesized via in situ nucleation and growth of ZIF-8 nanoparticles inside carbon aerogels. The novel material was used as the solid-phase microextraction (SPME) coating for the five phthalic...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9602289/ https://www.ncbi.nlm.nih.gov/pubmed/36286111 http://dx.doi.org/10.3390/gels8100610 |
Sumario: | In this study, a hybrid composite featuring zeolitic imidazolate framework-8/carbon aerogel (ZIF-8/CA) was synthesized via in situ nucleation and growth of ZIF-8 nanoparticles inside carbon aerogels. The novel material was used as the solid-phase microextraction (SPME) coating for the five phthalic acid esters (PAEs) detection by coupling with a gas chromatography–flame ionization detector (GC-FID). Compared with bare carbon aerogel, the ZIF-8/CA presented the best performance, which is attributed to the unique advantages between the high surface area of CA and high hydrophobic properties, the thermal stability of ZIF-8, and their synergistic adsorption effects, such as molecular penetration, hydrogen bond, and π–π stacking interactions. Under the optimized conditions, the as-proposed ZIF-8/CA fiber provided a wide linearity range from 0.2 to 1000 μg L(−1) and a low detection limit of 0.17–0.48 μg L(−1) for PAEs analysis. The intra-day and inter-day of signal fiber and the fiber–fiber relative standard deviations were observed in the ranges of 3.50–8.16%, 5.02–10.57%, and 5.66–12.11%, respectively. The method was applied to the determination of five PAEs in plastic bottled and river water samples. |
---|