Cargando…
Reconstruction of a Soil Microbial Network Induced by Stress Temperature
The microbial community is viewed as a network of diverse microorganisms connected by various interspecific interactions. While the stress gradient hypothesis (SGH) predicts that positive interactions are favored in more stressful environments, the prediction has been less explored in complex microb...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9602341/ https://www.ncbi.nlm.nih.gov/pubmed/35972265 http://dx.doi.org/10.1128/spectrum.02748-22 |
_version_ | 1784817292205359104 |
---|---|
author | Yang, Dailin Kato, Hiromi Kawatsu, Kazutaka Osada, Yutaka Azuma, Toyohiro Nagata, Yuji Kondoh, Michio |
author_facet | Yang, Dailin Kato, Hiromi Kawatsu, Kazutaka Osada, Yutaka Azuma, Toyohiro Nagata, Yuji Kondoh, Michio |
author_sort | Yang, Dailin |
collection | PubMed |
description | The microbial community is viewed as a network of diverse microorganisms connected by various interspecific interactions. While the stress gradient hypothesis (SGH) predicts that positive interactions are favored in more stressful environments, the prediction has been less explored in complex microbial communities due to the challenges of identifying interactions. Here, by applying a nonlinear time series analysis to the amplicon-based diversity time series data of the soil microbiota cultured under less stressful (30°C) or more stressful (37°C) temperature conditions, we show how the microbial network responds to temperature stress. While the genera that persisted only under the less stressful condition showed fewer positive effects, the genera that appeared only under the more stressful condition received more positive effects, in agreement with SGH. However, temperature difference also induced reconstruction of the community network, leading to an increased proportion of negative interactions at the whole-community level. The anti-SGH pattern can be explained by the stronger competition caused by increased metabolic rate and population densities. IMPORTANCE By combining amplicon-based diversity survey with recently developed nonlinear analytical tools, we successfully determined the interaction networks of more than 150 natural soil microbial genera under less or more temperature stress and explored the applicability of the stress gradient hypothesis to soil microbiota, shedding new light on the well-known hypothesis. |
format | Online Article Text |
id | pubmed-9602341 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-96023412022-10-27 Reconstruction of a Soil Microbial Network Induced by Stress Temperature Yang, Dailin Kato, Hiromi Kawatsu, Kazutaka Osada, Yutaka Azuma, Toyohiro Nagata, Yuji Kondoh, Michio Microbiol Spectr Research Article The microbial community is viewed as a network of diverse microorganisms connected by various interspecific interactions. While the stress gradient hypothesis (SGH) predicts that positive interactions are favored in more stressful environments, the prediction has been less explored in complex microbial communities due to the challenges of identifying interactions. Here, by applying a nonlinear time series analysis to the amplicon-based diversity time series data of the soil microbiota cultured under less stressful (30°C) or more stressful (37°C) temperature conditions, we show how the microbial network responds to temperature stress. While the genera that persisted only under the less stressful condition showed fewer positive effects, the genera that appeared only under the more stressful condition received more positive effects, in agreement with SGH. However, temperature difference also induced reconstruction of the community network, leading to an increased proportion of negative interactions at the whole-community level. The anti-SGH pattern can be explained by the stronger competition caused by increased metabolic rate and population densities. IMPORTANCE By combining amplicon-based diversity survey with recently developed nonlinear analytical tools, we successfully determined the interaction networks of more than 150 natural soil microbial genera under less or more temperature stress and explored the applicability of the stress gradient hypothesis to soil microbiota, shedding new light on the well-known hypothesis. American Society for Microbiology 2022-08-16 /pmc/articles/PMC9602341/ /pubmed/35972265 http://dx.doi.org/10.1128/spectrum.02748-22 Text en Copyright © 2022 Yang et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Article Yang, Dailin Kato, Hiromi Kawatsu, Kazutaka Osada, Yutaka Azuma, Toyohiro Nagata, Yuji Kondoh, Michio Reconstruction of a Soil Microbial Network Induced by Stress Temperature |
title | Reconstruction of a Soil Microbial Network Induced by Stress Temperature |
title_full | Reconstruction of a Soil Microbial Network Induced by Stress Temperature |
title_fullStr | Reconstruction of a Soil Microbial Network Induced by Stress Temperature |
title_full_unstemmed | Reconstruction of a Soil Microbial Network Induced by Stress Temperature |
title_short | Reconstruction of a Soil Microbial Network Induced by Stress Temperature |
title_sort | reconstruction of a soil microbial network induced by stress temperature |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9602341/ https://www.ncbi.nlm.nih.gov/pubmed/35972265 http://dx.doi.org/10.1128/spectrum.02748-22 |
work_keys_str_mv | AT yangdailin reconstructionofasoilmicrobialnetworkinducedbystresstemperature AT katohiromi reconstructionofasoilmicrobialnetworkinducedbystresstemperature AT kawatsukazutaka reconstructionofasoilmicrobialnetworkinducedbystresstemperature AT osadayutaka reconstructionofasoilmicrobialnetworkinducedbystresstemperature AT azumatoyohiro reconstructionofasoilmicrobialnetworkinducedbystresstemperature AT nagatayuji reconstructionofasoilmicrobialnetworkinducedbystresstemperature AT kondohmichio reconstructionofasoilmicrobialnetworkinducedbystresstemperature |