Cargando…
Decoupled Early Time Series Classification Using Varied-Length Feature Augmentation and Gradient Projection Technique
Early time series classification (ETSC) is crucial for real-world time-sensitive applications. This task aims to classify time series data with least timestamps at the desired accuracy. Early methods used fixed-length time series to train the deep models, and then quit the classification process by...
Autores principales: | Chen, Huiling, Zhang, Ye, Tian, Aosheng, Hou, Yi, Ma, Chao, Zhou, Shilin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9602421/ https://www.ncbi.nlm.nih.gov/pubmed/37420497 http://dx.doi.org/10.3390/e24101477 |
Ejemplares similares
-
Decoupling of nutrient element cycles in soil and plants across an altitude gradient
por: Tan, Qiqi, et al.
Publicado: (2016) -
Data Augmentation with Suboptimal Warping for Time-Series Classification
por: Kamycki, Krzysztof, et al.
Publicado: (2019) -
A stereo spatial decoupling network for medical image classification
por: You, Hongfeng, et al.
Publicado: (2023) -
Decoupling facial motion features and identity features for micro-expression recognition
por: Xie, Tingxuan, et al.
Publicado: (2022) -
Modified Whole Effluent Toxicity Test to Assess and Decouple Wastewater Effects from Environmental Gradients
por: Sauco, Sebastián, et al.
Publicado: (2013)