Cargando…
Dehydration Tolerance in Epidemic versus Nonepidemic MRSA Demonstrated by Isothermal Microcalorimetry
Methicillin-resistant Staphylococcus aureus (MRSA) clusters are considered epidemic or nonepidemic based on their ability to spread effectively. Successful transmission could be influenced by dehydration tolerance. Current methods for determination of dehydration tolerance lack accuracy. Here, a cli...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9602581/ https://www.ncbi.nlm.nih.gov/pubmed/35972129 http://dx.doi.org/10.1128/spectrum.00615-22 |
_version_ | 1784817353872113664 |
---|---|
author | Baede, Valérie O. Tavakol, Mehri Vos, Margreet C. Knight, Gwenan M. van Wamel, Willem J. B. |
author_facet | Baede, Valérie O. Tavakol, Mehri Vos, Margreet C. Knight, Gwenan M. van Wamel, Willem J. B. |
author_sort | Baede, Valérie O. |
collection | PubMed |
description | Methicillin-resistant Staphylococcus aureus (MRSA) clusters are considered epidemic or nonepidemic based on their ability to spread effectively. Successful transmission could be influenced by dehydration tolerance. Current methods for determination of dehydration tolerance lack accuracy. Here, a climate-controlled in vitro dehydration assay using isothermal microcalorimetry (IMC) was developed and linked with mathematical modeling to determine survival of 44 epidemic versus 54 nonepidemic MRSA strains from France, the United Kingdom, and the Netherlands after 1 week of dehydration. For each MRSA strain, the growth parameters time to end of first growth phase (tmax [h]) and maximal exponential growth rate (μ(m)) were deduced from IMC data for 3 experimental replicates, 3 different starting inocula, and before and after dehydration. If the maximal exponential growth rate was within predefined margins (±36% of the mean), a linear relationship between tmax and starting inoculum could be utilized to predict log reduction after dehydration for individual strains. With these criteria, 1,330 of 1,764 heat flow curves (data sets) (75%) could be analyzed to calculate the post-dehydration inoculum size, and thus the log reduction due to dehydration, for 90 of 98 strains (92%). Overall reduction was ~1 log after 1 week. No difference in dehydration tolerance was found between the epidemic and nonepidemic strains. Log reduction was negatively correlated with starting inoculum, indicating better survival of higher inocula. This study presents a framework to quantify bacterial survival. MRSA strains showed great capacity to persist in the environment, irrespective of epidemiological success. This finding strengthens the need for effective surface cleaning to contain MRSA transmission. IMPORTANCE Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of infections globally. While some MRSA clusters have spread worldwide, others are not able to disseminate successfully beyond certain regions despite frequent introduction. Dehydration tolerance facilitates transmission in hospital environments through enhanced survival on surfaces and fomites, potentially explaining differences in transmission success between MRSA clusters. Unfortunately, the currently available techniques to determine dehydration tolerance of cluster-forming bacteria like S. aureus are labor-intensive and unreliable due to their dependence on quantitative culturing. In this study, bacterial survival was assessed in a newly developed assay using isothermal microcalorimetry. With this technique, the effect of drying can be determined without the disadvantages of quantitative culturing. In combination with a newly developed mathematical algorithm, we determined dehydration tolerance of a large number of MRSA strains in a systematic, unbiased, and robust manner. |
format | Online Article Text |
id | pubmed-9602581 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-96025812022-10-27 Dehydration Tolerance in Epidemic versus Nonepidemic MRSA Demonstrated by Isothermal Microcalorimetry Baede, Valérie O. Tavakol, Mehri Vos, Margreet C. Knight, Gwenan M. van Wamel, Willem J. B. Microbiol Spectr Research Article Methicillin-resistant Staphylococcus aureus (MRSA) clusters are considered epidemic or nonepidemic based on their ability to spread effectively. Successful transmission could be influenced by dehydration tolerance. Current methods for determination of dehydration tolerance lack accuracy. Here, a climate-controlled in vitro dehydration assay using isothermal microcalorimetry (IMC) was developed and linked with mathematical modeling to determine survival of 44 epidemic versus 54 nonepidemic MRSA strains from France, the United Kingdom, and the Netherlands after 1 week of dehydration. For each MRSA strain, the growth parameters time to end of first growth phase (tmax [h]) and maximal exponential growth rate (μ(m)) were deduced from IMC data for 3 experimental replicates, 3 different starting inocula, and before and after dehydration. If the maximal exponential growth rate was within predefined margins (±36% of the mean), a linear relationship between tmax and starting inoculum could be utilized to predict log reduction after dehydration for individual strains. With these criteria, 1,330 of 1,764 heat flow curves (data sets) (75%) could be analyzed to calculate the post-dehydration inoculum size, and thus the log reduction due to dehydration, for 90 of 98 strains (92%). Overall reduction was ~1 log after 1 week. No difference in dehydration tolerance was found between the epidemic and nonepidemic strains. Log reduction was negatively correlated with starting inoculum, indicating better survival of higher inocula. This study presents a framework to quantify bacterial survival. MRSA strains showed great capacity to persist in the environment, irrespective of epidemiological success. This finding strengthens the need for effective surface cleaning to contain MRSA transmission. IMPORTANCE Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of infections globally. While some MRSA clusters have spread worldwide, others are not able to disseminate successfully beyond certain regions despite frequent introduction. Dehydration tolerance facilitates transmission in hospital environments through enhanced survival on surfaces and fomites, potentially explaining differences in transmission success between MRSA clusters. Unfortunately, the currently available techniques to determine dehydration tolerance of cluster-forming bacteria like S. aureus are labor-intensive and unreliable due to their dependence on quantitative culturing. In this study, bacterial survival was assessed in a newly developed assay using isothermal microcalorimetry. With this technique, the effect of drying can be determined without the disadvantages of quantitative culturing. In combination with a newly developed mathematical algorithm, we determined dehydration tolerance of a large number of MRSA strains in a systematic, unbiased, and robust manner. American Society for Microbiology 2022-08-16 /pmc/articles/PMC9602581/ /pubmed/35972129 http://dx.doi.org/10.1128/spectrum.00615-22 Text en Copyright © 2022 Baede et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Article Baede, Valérie O. Tavakol, Mehri Vos, Margreet C. Knight, Gwenan M. van Wamel, Willem J. B. Dehydration Tolerance in Epidemic versus Nonepidemic MRSA Demonstrated by Isothermal Microcalorimetry |
title | Dehydration Tolerance in Epidemic versus Nonepidemic MRSA Demonstrated by Isothermal Microcalorimetry |
title_full | Dehydration Tolerance in Epidemic versus Nonepidemic MRSA Demonstrated by Isothermal Microcalorimetry |
title_fullStr | Dehydration Tolerance in Epidemic versus Nonepidemic MRSA Demonstrated by Isothermal Microcalorimetry |
title_full_unstemmed | Dehydration Tolerance in Epidemic versus Nonepidemic MRSA Demonstrated by Isothermal Microcalorimetry |
title_short | Dehydration Tolerance in Epidemic versus Nonepidemic MRSA Demonstrated by Isothermal Microcalorimetry |
title_sort | dehydration tolerance in epidemic versus nonepidemic mrsa demonstrated by isothermal microcalorimetry |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9602581/ https://www.ncbi.nlm.nih.gov/pubmed/35972129 http://dx.doi.org/10.1128/spectrum.00615-22 |
work_keys_str_mv | AT baedevalerieo dehydrationtoleranceinepidemicversusnonepidemicmrsademonstratedbyisothermalmicrocalorimetry AT tavakolmehri dehydrationtoleranceinepidemicversusnonepidemicmrsademonstratedbyisothermalmicrocalorimetry AT vosmargreetc dehydrationtoleranceinepidemicversusnonepidemicmrsademonstratedbyisothermalmicrocalorimetry AT knightgwenanm dehydrationtoleranceinepidemicversusnonepidemicmrsademonstratedbyisothermalmicrocalorimetry AT vanwamelwillemjb dehydrationtoleranceinepidemicversusnonepidemicmrsademonstratedbyisothermalmicrocalorimetry |