Cargando…

Allyl Aryl Ether Cleavage by Blautia sp. MRG-PMF1 Cocorrinoid O-Demethylase

Coabalamin-dependent O-demethylase in Blautia sp. strain MRG-PMF1 was found to catalyze the unprecedented allyl aryl ether cleavage reaction. To expand the potential biotechnological applications, the reaction mechanism of the allyl aryl ether C-O bond cleavage, proposed to utilize the reactive Co(I...

Descripción completa

Detalles Bibliográficos
Autores principales: Mi, Huynh Thi Ngoc, Chaiyasarn, Santipap, Eser, Bekir Engin, Tan, Steven R. Susanto, Burapan, Supawadee, Han, Jaehong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9602652/
https://www.ncbi.nlm.nih.gov/pubmed/36197289
http://dx.doi.org/10.1128/spectrum.03305-22
_version_ 1784817372087975936
author Mi, Huynh Thi Ngoc
Chaiyasarn, Santipap
Eser, Bekir Engin
Tan, Steven R. Susanto
Burapan, Supawadee
Han, Jaehong
author_facet Mi, Huynh Thi Ngoc
Chaiyasarn, Santipap
Eser, Bekir Engin
Tan, Steven R. Susanto
Burapan, Supawadee
Han, Jaehong
author_sort Mi, Huynh Thi Ngoc
collection PubMed
description Coabalamin-dependent O-demethylase in Blautia sp. strain MRG-PMF1 was found to catalyze the unprecedented allyl aryl ether cleavage reaction. To expand the potential biotechnological applications, the reaction mechanism of the allyl aryl ether C-O bond cleavage, proposed to utilize the reactive Co(I) supernucleophile species, was studied further from the anaerobic whole-cell biotransformation. Various allyl naphthyl ether derivatives were reacted with Blautia sp. MRG-PMF1 O-demethylase, and stereoisomers of allyl naphthyl ethers, including prenyl and but-2-enyl naphthyl ethers, were converted to the corresponding naphthol in a stereoselective manner. The allyl aryl ether cleavage reaction was regioselective, and 2-naphthyl ethers were converted faster than the corresponding 1-naphthyl ethers. However, MRG-PMF1 cocorrinoid O-demethylase was not able to convert (2-methylallyl) naphthyl ether substrates, and the conversion of propargyl naphthyl ether was extremely slow. From the results, it was proposed that the allyl ether cleavage reaction follows the nucleophilic conjugate substitution (S(N)2′) mechanism. The reactivity and mechanism of the new allyl ether cleavage reaction by cobalamin-dependent O-demethylase would facilitate the application of Blautia sp. MRG-PMF1 O-demethylase in the area of green biotechnology. IMPORTANCE Biodegradation of environmental pollutants and valorization of biomaterials in a greener way is of great interest. Cobalamin-dependent O-demethylase in Blautia sp. MRG-PMF1 exclusively involves anaerobic C1 metabolism by cleaving the C-O bond of aromatic methoxy group and also produces various aryl alcohols by metabolizing allyl aryl ether compounds. Whereas methyl ether cleavage reaction is known to follow the S(N)2′ mechanism, the reaction pattern and mechanism of the new allyl ether cleavage reaction by cobalamin-dependent O-demethylase have never been studied. For the first time, stereoselectivity and the S(N)2′ mechanism of allyl aryl ether cleavage reaction by Blautia sp. MRG-PMF1 O-demethylase is reported, and the results would facilitate the application of Blautia sp. MRG-PMF1 O-demethylase in the area of green biotechnology.
format Online
Article
Text
id pubmed-9602652
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-96026522022-10-27 Allyl Aryl Ether Cleavage by Blautia sp. MRG-PMF1 Cocorrinoid O-Demethylase Mi, Huynh Thi Ngoc Chaiyasarn, Santipap Eser, Bekir Engin Tan, Steven R. Susanto Burapan, Supawadee Han, Jaehong Microbiol Spectr Research Article Coabalamin-dependent O-demethylase in Blautia sp. strain MRG-PMF1 was found to catalyze the unprecedented allyl aryl ether cleavage reaction. To expand the potential biotechnological applications, the reaction mechanism of the allyl aryl ether C-O bond cleavage, proposed to utilize the reactive Co(I) supernucleophile species, was studied further from the anaerobic whole-cell biotransformation. Various allyl naphthyl ether derivatives were reacted with Blautia sp. MRG-PMF1 O-demethylase, and stereoisomers of allyl naphthyl ethers, including prenyl and but-2-enyl naphthyl ethers, were converted to the corresponding naphthol in a stereoselective manner. The allyl aryl ether cleavage reaction was regioselective, and 2-naphthyl ethers were converted faster than the corresponding 1-naphthyl ethers. However, MRG-PMF1 cocorrinoid O-demethylase was not able to convert (2-methylallyl) naphthyl ether substrates, and the conversion of propargyl naphthyl ether was extremely slow. From the results, it was proposed that the allyl ether cleavage reaction follows the nucleophilic conjugate substitution (S(N)2′) mechanism. The reactivity and mechanism of the new allyl ether cleavage reaction by cobalamin-dependent O-demethylase would facilitate the application of Blautia sp. MRG-PMF1 O-demethylase in the area of green biotechnology. IMPORTANCE Biodegradation of environmental pollutants and valorization of biomaterials in a greener way is of great interest. Cobalamin-dependent O-demethylase in Blautia sp. MRG-PMF1 exclusively involves anaerobic C1 metabolism by cleaving the C-O bond of aromatic methoxy group and also produces various aryl alcohols by metabolizing allyl aryl ether compounds. Whereas methyl ether cleavage reaction is known to follow the S(N)2′ mechanism, the reaction pattern and mechanism of the new allyl ether cleavage reaction by cobalamin-dependent O-demethylase have never been studied. For the first time, stereoselectivity and the S(N)2′ mechanism of allyl aryl ether cleavage reaction by Blautia sp. MRG-PMF1 O-demethylase is reported, and the results would facilitate the application of Blautia sp. MRG-PMF1 O-demethylase in the area of green biotechnology. American Society for Microbiology 2022-10-05 /pmc/articles/PMC9602652/ /pubmed/36197289 http://dx.doi.org/10.1128/spectrum.03305-22 Text en Copyright © 2022 Mi et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Research Article
Mi, Huynh Thi Ngoc
Chaiyasarn, Santipap
Eser, Bekir Engin
Tan, Steven R. Susanto
Burapan, Supawadee
Han, Jaehong
Allyl Aryl Ether Cleavage by Blautia sp. MRG-PMF1 Cocorrinoid O-Demethylase
title Allyl Aryl Ether Cleavage by Blautia sp. MRG-PMF1 Cocorrinoid O-Demethylase
title_full Allyl Aryl Ether Cleavage by Blautia sp. MRG-PMF1 Cocorrinoid O-Demethylase
title_fullStr Allyl Aryl Ether Cleavage by Blautia sp. MRG-PMF1 Cocorrinoid O-Demethylase
title_full_unstemmed Allyl Aryl Ether Cleavage by Blautia sp. MRG-PMF1 Cocorrinoid O-Demethylase
title_short Allyl Aryl Ether Cleavage by Blautia sp. MRG-PMF1 Cocorrinoid O-Demethylase
title_sort allyl aryl ether cleavage by blautia sp. mrg-pmf1 cocorrinoid o-demethylase
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9602652/
https://www.ncbi.nlm.nih.gov/pubmed/36197289
http://dx.doi.org/10.1128/spectrum.03305-22
work_keys_str_mv AT mihuynhthingoc allylarylethercleavagebyblautiaspmrgpmf1cocorrinoidodemethylase
AT chaiyasarnsantipap allylarylethercleavagebyblautiaspmrgpmf1cocorrinoidodemethylase
AT eserbekirengin allylarylethercleavagebyblautiaspmrgpmf1cocorrinoidodemethylase
AT tanstevenrsusanto allylarylethercleavagebyblautiaspmrgpmf1cocorrinoidodemethylase
AT burapansupawadee allylarylethercleavagebyblautiaspmrgpmf1cocorrinoidodemethylase
AT hanjaehong allylarylethercleavagebyblautiaspmrgpmf1cocorrinoidodemethylase