Cargando…
RLPredictiOme, a Machine Learning-Derived Method for High-Throughput Prediction of Plant Receptor-like Proteins, Reveals Novel Classes of Transmembrane Receptors
Cell surface receptors play essential roles in perceiving and processing external and internal signals at the cell surface of plants and animals. The receptor-like protein kinases (RLK) and receptor-like proteins (RLPs), two major classes of proteins with membrane receptor configuration, play a cruc...
Autores principales: | Silva, Jose Cleydson F., Ferreira, Marco Aurélio, Carvalho, Thales F. M., Silva, Fabyano F., de A. Silveira, Sabrina, Brommonschenkel, Sergio H., Fontes, Elizabeth P. B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9603095/ https://www.ncbi.nlm.nih.gov/pubmed/36293031 http://dx.doi.org/10.3390/ijms232012176 |
Ejemplares similares
-
Fangorn Forest (F2): a machine learning approach to classify genes and genera in the family Geminiviridae
por: Silva, José Cleydson F., et al.
Publicado: (2017) -
Rama: a machine learning approach for ribosomal protein prediction in plants
por: Carvalho, Thales Francisco Mota, et al.
Publicado: (2017) -
No place like Ome
por: Petsko, Gregory A
Publicado: (2002) -
Reading and writing omes
por: Church, George M
Publicado: (2013) -
Geminivirus data warehouse: a database enriched with machine learning approaches
por: Silva, Jose Cleydson F., et al.
Publicado: (2017)