Cargando…

Comparison of the APAS Independence Automated Plate Reader System with the Manual Standard of Care for Processing Urine Culture Specimens

Urine cultures are among the highest-volume tests in clinical microbiology laboratories and usually require considerable manual labor to perform. We evaluated the APAS Independence automated plate reader system and compared it to our manual standard of care (SOC) for processing urine cultures. The A...

Descripción completa

Detalles Bibliográficos
Autores principales: Chiu, Megan, Kuo, Peiting, Lecrone, Khrissa, Garcia, Andrew, Chen, Ruohui, Quach, Natalie E., Tu, Xin M., Pride, David T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9603219/
https://www.ncbi.nlm.nih.gov/pubmed/35972280
http://dx.doi.org/10.1128/spectrum.01442-22
_version_ 1784817494269100032
author Chiu, Megan
Kuo, Peiting
Lecrone, Khrissa
Garcia, Andrew
Chen, Ruohui
Quach, Natalie E.
Tu, Xin M.
Pride, David T.
author_facet Chiu, Megan
Kuo, Peiting
Lecrone, Khrissa
Garcia, Andrew
Chen, Ruohui
Quach, Natalie E.
Tu, Xin M.
Pride, David T.
author_sort Chiu, Megan
collection PubMed
description Urine cultures are among the highest-volume tests in clinical microbiology laboratories and usually require considerable manual labor to perform. We evaluated the APAS Independence automated plate reader system and compared it to our manual standard of care (SOC) for processing urine cultures. The APAS device provides automated image interpretation of urine culture plate growth and sorts those images that require further evaluation. We examined 1,519 specimens over a 4-month period and compared the APAS growth interpretations to our SOC. We found that 72 of the 1,519 total specimens (4.74%) had growth discrepancies, where these specimens were interpreted differently by the APAS and the technologist, which required additional evaluation of plate images on the APAS system. Overall, there were 56 discrepancies in pathogen identification, which were present in 3.69% of the cultures. An additional pathogen was uncovered in a majority of these discrepancies; 12 (21.4%) identified an additional pathogen for the SOC, and 40 (71.4%) identified an additional pathogen for the APAS workflow. We found 214 (2.69%) antimicrobial susceptibility test (AST) discrepancies; 136 (1.71%) minor errors (mEs), 41 (0.52%) major errors (MEs), and 36 (0.45%) very major errors (VMEs). Many of the MEs and VMEs occurred in only a small subset of 13 organisms, suggesting that the specimen may have had different strains of the same pathogens with differing AST results. Given the significant labor required to perform urine cultures, the APAS Independence system has the potential to reduce manual labor while maintaining the identity and AST results of urinary pathogens. IMPORTANCE Urine cultures are among the highest-volume tests performed in clinical microbiology facilities and require considerable manual labor to perform. We compared the results of our manual SOC workflow with that of the APAS Independence system, which provides automated image interpretation and sorting of urine culture plates based on growth. We examined 1,519 urine cultures processed using both workflows and found that only 4.74% had growth pattern discrepancies and 3.69% pathogen identification discrepancies. There was substantial agreement in AST results between workflows, with only 2.69% having discrepancies. Only 1.71% of the ASTs had mEs, 0.52% had MEs, and 0.45% had VMEs, with most of the MEs and VMEs belonging to a small subset of organisms. The APAS system significantly decreased manual urine culture processing, while providing similar results to the SOC. As such, incorporating such automation into laboratory workflows has the potential to significantly improve efficiency.
format Online
Article
Text
id pubmed-9603219
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-96032192022-10-27 Comparison of the APAS Independence Automated Plate Reader System with the Manual Standard of Care for Processing Urine Culture Specimens Chiu, Megan Kuo, Peiting Lecrone, Khrissa Garcia, Andrew Chen, Ruohui Quach, Natalie E. Tu, Xin M. Pride, David T. Microbiol Spectr Research Article Urine cultures are among the highest-volume tests in clinical microbiology laboratories and usually require considerable manual labor to perform. We evaluated the APAS Independence automated plate reader system and compared it to our manual standard of care (SOC) for processing urine cultures. The APAS device provides automated image interpretation of urine culture plate growth and sorts those images that require further evaluation. We examined 1,519 specimens over a 4-month period and compared the APAS growth interpretations to our SOC. We found that 72 of the 1,519 total specimens (4.74%) had growth discrepancies, where these specimens were interpreted differently by the APAS and the technologist, which required additional evaluation of plate images on the APAS system. Overall, there were 56 discrepancies in pathogen identification, which were present in 3.69% of the cultures. An additional pathogen was uncovered in a majority of these discrepancies; 12 (21.4%) identified an additional pathogen for the SOC, and 40 (71.4%) identified an additional pathogen for the APAS workflow. We found 214 (2.69%) antimicrobial susceptibility test (AST) discrepancies; 136 (1.71%) minor errors (mEs), 41 (0.52%) major errors (MEs), and 36 (0.45%) very major errors (VMEs). Many of the MEs and VMEs occurred in only a small subset of 13 organisms, suggesting that the specimen may have had different strains of the same pathogens with differing AST results. Given the significant labor required to perform urine cultures, the APAS Independence system has the potential to reduce manual labor while maintaining the identity and AST results of urinary pathogens. IMPORTANCE Urine cultures are among the highest-volume tests performed in clinical microbiology facilities and require considerable manual labor to perform. We compared the results of our manual SOC workflow with that of the APAS Independence system, which provides automated image interpretation and sorting of urine culture plates based on growth. We examined 1,519 urine cultures processed using both workflows and found that only 4.74% had growth pattern discrepancies and 3.69% pathogen identification discrepancies. There was substantial agreement in AST results between workflows, with only 2.69% having discrepancies. Only 1.71% of the ASTs had mEs, 0.52% had MEs, and 0.45% had VMEs, with most of the MEs and VMEs belonging to a small subset of organisms. The APAS system significantly decreased manual urine culture processing, while providing similar results to the SOC. As such, incorporating such automation into laboratory workflows has the potential to significantly improve efficiency. American Society for Microbiology 2022-08-16 /pmc/articles/PMC9603219/ /pubmed/35972280 http://dx.doi.org/10.1128/spectrum.01442-22 Text en Copyright © 2022 Chiu et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Research Article
Chiu, Megan
Kuo, Peiting
Lecrone, Khrissa
Garcia, Andrew
Chen, Ruohui
Quach, Natalie E.
Tu, Xin M.
Pride, David T.
Comparison of the APAS Independence Automated Plate Reader System with the Manual Standard of Care for Processing Urine Culture Specimens
title Comparison of the APAS Independence Automated Plate Reader System with the Manual Standard of Care for Processing Urine Culture Specimens
title_full Comparison of the APAS Independence Automated Plate Reader System with the Manual Standard of Care for Processing Urine Culture Specimens
title_fullStr Comparison of the APAS Independence Automated Plate Reader System with the Manual Standard of Care for Processing Urine Culture Specimens
title_full_unstemmed Comparison of the APAS Independence Automated Plate Reader System with the Manual Standard of Care for Processing Urine Culture Specimens
title_short Comparison of the APAS Independence Automated Plate Reader System with the Manual Standard of Care for Processing Urine Culture Specimens
title_sort comparison of the apas independence automated plate reader system with the manual standard of care for processing urine culture specimens
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9603219/
https://www.ncbi.nlm.nih.gov/pubmed/35972280
http://dx.doi.org/10.1128/spectrum.01442-22
work_keys_str_mv AT chiumegan comparisonoftheapasindependenceautomatedplatereadersystemwiththemanualstandardofcareforprocessingurineculturespecimens
AT kuopeiting comparisonoftheapasindependenceautomatedplatereadersystemwiththemanualstandardofcareforprocessingurineculturespecimens
AT lecronekhrissa comparisonoftheapasindependenceautomatedplatereadersystemwiththemanualstandardofcareforprocessingurineculturespecimens
AT garciaandrew comparisonoftheapasindependenceautomatedplatereadersystemwiththemanualstandardofcareforprocessingurineculturespecimens
AT chenruohui comparisonoftheapasindependenceautomatedplatereadersystemwiththemanualstandardofcareforprocessingurineculturespecimens
AT quachnataliee comparisonoftheapasindependenceautomatedplatereadersystemwiththemanualstandardofcareforprocessingurineculturespecimens
AT tuxinm comparisonoftheapasindependenceautomatedplatereadersystemwiththemanualstandardofcareforprocessingurineculturespecimens
AT pridedavidt comparisonoftheapasindependenceautomatedplatereadersystemwiththemanualstandardofcareforprocessingurineculturespecimens