Cargando…
ACP-ADA: A Boosting Method with Data Augmentation for Improved Prediction of Anticancer Peptides
Cancer is the second-leading cause of death worldwide, and therapeutic peptides that target and destroy cancer cells have received a great deal of interest in recent years. Traditional wet experiments are expensive and inefficient for identifying novel anticancer peptides; therefore, the development...
Autores principales: | Bhattarai, Sadik, Kim, Kyu-Sik, Tayara, Hilal, Chong, Kil To |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9603247/ https://www.ncbi.nlm.nih.gov/pubmed/36293050 http://dx.doi.org/10.3390/ijms232012194 |
Ejemplares similares
-
ACP-DA: Improving the Prediction of Anticancer Peptides Using Data Augmentation
por: Chen, Xian-gan, et al.
Publicado: (2021) -
ACP-GBDT: An improved anticancer peptide identification method with gradient boosting decision tree
por: Li, Yanjuan, et al.
Publicado: (2023) -
XG-ac4C: identification of N4-acetylcytidine (ac4C) in mRNA using eXtreme gradient boosting with electron-ion interaction pseudopotentials
por: Alam, Waleed, et al.
Publicado: (2020) -
EnACP: An Ensemble Learning Model for Identification of Anticancer Peptides
por: Ge, Ruiquan, et al.
Publicado: (2020) -
Improving the Quantification of DNA Sequences Using Evolutionary Information Based on Deep Learning
por: Tayara, Hilal, et al.
Publicado: (2019)