Cargando…

Understanding Hazardous Materials Transportation Accidents Based on Higher-Order Network Theory

In hazardous materials transportation systems, accident causation analysis is important to transportation safety. Complex network theory can be effectively used to understand the causal factors of and their relationships within accidents. In this paper, a higher-order network method is proposed to e...

Descripción completa

Detalles Bibliográficos
Autores principales: Ren, Cuiping, Chen, Bianbian, Xie, Fengjie, Zhao, Xuan, Zhang, Jiaqian, Zhou, Xueyan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9603339/
https://www.ncbi.nlm.nih.gov/pubmed/36293920
http://dx.doi.org/10.3390/ijerph192013337
Descripción
Sumario:In hazardous materials transportation systems, accident causation analysis is important to transportation safety. Complex network theory can be effectively used to understand the causal factors of and their relationships within accidents. In this paper, a higher-order network method is proposed to establish a hazardous materials transportation accident causation network (HMTACN), which considers the sequences and dependences of causal factors. The HMTACN is composed of 125 first- and 118 higher-order nodes that represent causes, and 545 directed edges that denote complex relationships among causes. By analyzing topological properties, the results show that the HMTACN has the characteristics of small-world networks and displays the properties of scale-free networks. Additionally, critical causal factors and key relationships of the HMTACN are discovered. Moreover, unsafe tank or valve states are important causal factors; and leakage, roll-over, collision, and fire are most likely to trigger chain reactions. Important higher-order nodes are discovered, which can represent key relationships in the HMTACN. For example, unsafe distance and improper operation usually lead to collision and roll-over. These results of higher-order nodes cannot be found by the traditional Markov network model. This study provides a practical way to extract and construct an accident causation network from numerous accident investigation reports. It also provides insights into safety management of hazardous materials transportation.