Cargando…
Clusters of Pregnant Women with Severe Acute Respiratory Syndrome Due to COVID-19: An Unsupervised Learning Approach
COVID-19 has been widely explored in relation to its symptoms, outcomes, and risk profiles for the severe form of the disease. Our aim was to identify clusters of pregnant and postpartum women with severe acute respiratory syndrome (SARS) due to COVID-19 by analyzing data available in the Influenza...
Autores principales: | Carneiro, Isadora Celine Rodrigues, Feronato, Sofia Galvão, Silveira, Guilherme Ferreira, Chiavegatto Filho, Alexandre Dias Porto, dos Santos, Hellen Geremias |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9603349/ https://www.ncbi.nlm.nih.gov/pubmed/36294103 http://dx.doi.org/10.3390/ijerph192013522 |
Ejemplares similares
-
Data Leakage in Health Outcomes Prediction With Machine Learning. Comment on “Prediction of Incident Hypertension Within the Next Year: Prospective Study Using Statewide Electronic Health Records and Machine Learning”
por: Chiavegatto Filho, Alexandre, et al.
Publicado: (2021) -
Selecting Genetic Variants and Interactions Associated with Amyotrophic Lateral Sclerosis: A Group LASSO Approach
por: Feronato, Sofia Galvão, et al.
Publicado: (2022) -
Spatial Clusters of Cancer Mortality in Brazil: A Machine Learning Modeling Approach
por: Casaes Teixeira, Bruno, et al.
Publicado: (2023) -
Acesso a serviços de atenção hospitalar no período neonatal: análise
de redes de deslocamento entre municípios do Estado do Paraná, Brasil
por: Silveira, Daniela Martins, et al.
Publicado: (2023) -
Improving the performance of machine learning algorithms for health outcomes predictions in multicentric cohorts
por: Wichmann, Roberta Moreira, et al.
Publicado: (2023)