Cargando…
A High Daptomycin Dose Is Associated with Better Bacterial Clearance in Infections Caused by Vancomycin-Resistant Enterococcus faecium Regardless of Daptomycin Minimum Inhibitory Concentration in a Rat Infective Endocarditis Model
A high daptomycin dose has been suggested for treating vancomycin-resistant Enterococcus faecium (VREf) infections. However, even a 12 mg/kg daptomycin dose might be insufficient for treating VREf with high daptomycin minimum inhibitory concentrations (MICs). Additionally, animal pharmacodynamic and...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9603373/ https://www.ncbi.nlm.nih.gov/pubmed/36190402 http://dx.doi.org/10.1128/spectrum.02551-22 |
Sumario: | A high daptomycin dose has been suggested for treating vancomycin-resistant Enterococcus faecium (VREf) infections. However, even a 12 mg/kg daptomycin dose might be insufficient for treating VREf with high daptomycin minimum inhibitory concentrations (MICs). Additionally, animal pharmacodynamic and infection models to confirm the efficacy of 12 mg/kg daptomycin are lacking. Male Wistar rats were used for pharmacokinetic profiling and for the development of an infective endocarditis (IE) model. Daptomycin-susceptible dose-dependent VREf (DSE) (MIC of 0.5 mg/L) and daptomycin nonsusceptible VREf (DNSE) (MIC of 8 mg/L) were used for the IE models. The bacterial load of vegetation was the primary outcome and was evaluated after 3 days of daptomycin treatment. Daptomycin administered subcutaneously (s.c.) at 45 and 90 mg/kg, which corresponded to maximum serum concentrations (Cmax) of 122.6 mg/L and 178.5 mg/L, respectively, was equivalent to doses of 8 mg/kg and 12 mg/kg, respectively, in humans. The Cmax/MIC value was correlated with the bacterial load of vegetation after treatment (r = −0.88, P < 0.001). The 90 mg/kg s.c. group showed a significantly lower bacterial load of vegetation (log(10) CFU/g) than the 45 mg/kg s.c. group against DSE (0 versus 4.75, P < 0.001) and DNSE (5.12 versus 6.98, P = 0.002). The 90 mg/kg s.c. group did not sterilize the vegetation against DNSE. Although the human equivalent dose of 12 mg/kg daptomycin was more effective than the smaller dose in reducing the bacterial load in DSE and DNSE IE, the dose could not sterilize the vegetation during a DNSE treatment. Further treatment strategies by which to manage severe VREf infections, especially at high daptomycin MICs, are urgently needed. IMPORTANCE Using a rat IE model with pharmacokinetic analysis, the treatment response of VREf IE was found to be daptomycin dose-dependent, presented as Cmax/MIC or as the 24 h area under the concentration-time curve (AUC(0–24))/MIC. Daptomycin 90 mg/kg s.c. significantly reduced the bacterial load against DSE and DNSE. It also showed significant activity against DSE and DNSE, compared to 45 mg/kg s.c. Although daptomycin 90 mg/kg can eradicate the bacterial load after 3 days of treatment against DSE, eradication cannot be achieved with 90 mg/kg daptomycin against DNSE. |
---|