Cargando…
Automated Analysis of Sleep Study Parameters Using Signal Processing and Artificial Intelligence
An automated sleep stage categorization can readily face noise-contaminated EEG recordings, just as other signal processing applications. Therefore, the denoising of the contaminated signals is inevitable to ensure a reliable analysis of the EEG signals. In this research work, an empirical mode deco...
Autores principales: | Sohaib, Muhammad, Ghaffar, Ayesha, Shin, Jungpil, Hasan, Md Junayed, Suleman, Muhammad Taseer |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9603486/ https://www.ncbi.nlm.nih.gov/pubmed/36293844 http://dx.doi.org/10.3390/ijerph192013256 |
Ejemplares similares
-
A Multitask-Aided Transfer Learning-Based Diagnostic Framework for Bearings under Inconsistent Working Conditions
por: Hasan, Md Junayed, et al.
Publicado: (2020) -
An Explainable AI-Based Fault Diagnosis Model for Bearings
por: Hasan, Md Junayed, et al.
Publicado: (2021) -
Editorial: Artificial intelligence in bioimaging and signal processing
por: Park, Seongyong, et al.
Publicado: (2023) -
Use of Artificial Intelligence for Predicting Parameters of Sustainable Concrete and Raw Ingredient Effects and Interactions
por: Amin, Muhammad Nasir, et al.
Publicado: (2022) -
Assessment of Artificial Intelligence Strategies to Estimate the Strength of Geopolymer Composites and Influence of Input Parameters
por: Khan, Kaffayatullah, et al.
Publicado: (2022)