Cargando…
Pseudomonas aeruginosa Induces Interferon-β Production to Promote Intracellular Survival
Pseudomonas aeruginosa (PA) is known as one kind of extracellular pathogens. However, more evidence showed that PA encounters the intracellular environment in different mammalian cell types. Little is known of innate immune factors modulating intracellular PA survival. In the present study, we propo...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9603546/ https://www.ncbi.nlm.nih.gov/pubmed/36190409 http://dx.doi.org/10.1128/spectrum.01550-22 |
_version_ | 1784817578548396032 |
---|---|
author | Yang, Ling Zhang, Yu-Wei Liu, Yang Xie, Ying-Zhou Weng, Dong Ge, Bao-Xue Liu, Hai-Peng Xu, Jin-Fu |
author_facet | Yang, Ling Zhang, Yu-Wei Liu, Yang Xie, Ying-Zhou Weng, Dong Ge, Bao-Xue Liu, Hai-Peng Xu, Jin-Fu |
author_sort | Yang, Ling |
collection | PubMed |
description | Pseudomonas aeruginosa (PA) is known as one kind of extracellular pathogens. However, more evidence showed that PA encounters the intracellular environment in different mammalian cell types. Little is known of innate immune factors modulating intracellular PA survival. In the present study, we proposed that interferon-β (IFN-β) is beneficial to the survival of PA in the cytoplasm of macrophages. Furthermore, we found that interleukin-1β (IL-1β) induced by PA suppresses IFN-β response driven by the cGAS-STING-TBK1 pathway. Mechanistically, IL-1β decreased the production of cyclic GMP-AMP (cGAMP) by activating AKT kinase. cGAMP is necessarily sufficient to stimulate the transcription of IFN-β via the STING adaptor-TBK1 kinase-IRF3 transcription factor axis. Thus, our findings uncovered a novel module for PA intracellular survival involving IFN-β production restricted by IL-1β and provided a strong rationale for a potential clinical strategy against pulmonary PA infection patients. IMPORTANCE The link between innate immunity and intracellular Pseudomonas aeruginosa is unclear. Our studies illuminated the role of interferon-β (IFN-β) in remote intracellular PA infection. Furthermore, our experimental evidence also indicated that IL-1β is a negative regulator of IFN-β production and, in particular, P. aeruginosa infection. The inhibition of IFN-β may be used as a potential therapeutic method against pulmonary PA infection. |
format | Online Article Text |
id | pubmed-9603546 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-96035462022-10-27 Pseudomonas aeruginosa Induces Interferon-β Production to Promote Intracellular Survival Yang, Ling Zhang, Yu-Wei Liu, Yang Xie, Ying-Zhou Weng, Dong Ge, Bao-Xue Liu, Hai-Peng Xu, Jin-Fu Microbiol Spectr Research Article Pseudomonas aeruginosa (PA) is known as one kind of extracellular pathogens. However, more evidence showed that PA encounters the intracellular environment in different mammalian cell types. Little is known of innate immune factors modulating intracellular PA survival. In the present study, we proposed that interferon-β (IFN-β) is beneficial to the survival of PA in the cytoplasm of macrophages. Furthermore, we found that interleukin-1β (IL-1β) induced by PA suppresses IFN-β response driven by the cGAS-STING-TBK1 pathway. Mechanistically, IL-1β decreased the production of cyclic GMP-AMP (cGAMP) by activating AKT kinase. cGAMP is necessarily sufficient to stimulate the transcription of IFN-β via the STING adaptor-TBK1 kinase-IRF3 transcription factor axis. Thus, our findings uncovered a novel module for PA intracellular survival involving IFN-β production restricted by IL-1β and provided a strong rationale for a potential clinical strategy against pulmonary PA infection patients. IMPORTANCE The link between innate immunity and intracellular Pseudomonas aeruginosa is unclear. Our studies illuminated the role of interferon-β (IFN-β) in remote intracellular PA infection. Furthermore, our experimental evidence also indicated that IL-1β is a negative regulator of IFN-β production and, in particular, P. aeruginosa infection. The inhibition of IFN-β may be used as a potential therapeutic method against pulmonary PA infection. American Society for Microbiology 2022-10-03 /pmc/articles/PMC9603546/ /pubmed/36190409 http://dx.doi.org/10.1128/spectrum.01550-22 Text en Copyright © 2022 Yang et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Article Yang, Ling Zhang, Yu-Wei Liu, Yang Xie, Ying-Zhou Weng, Dong Ge, Bao-Xue Liu, Hai-Peng Xu, Jin-Fu Pseudomonas aeruginosa Induces Interferon-β Production to Promote Intracellular Survival |
title | Pseudomonas aeruginosa Induces Interferon-β Production to Promote Intracellular Survival |
title_full | Pseudomonas aeruginosa Induces Interferon-β Production to Promote Intracellular Survival |
title_fullStr | Pseudomonas aeruginosa Induces Interferon-β Production to Promote Intracellular Survival |
title_full_unstemmed | Pseudomonas aeruginosa Induces Interferon-β Production to Promote Intracellular Survival |
title_short | Pseudomonas aeruginosa Induces Interferon-β Production to Promote Intracellular Survival |
title_sort | pseudomonas aeruginosa induces interferon-β production to promote intracellular survival |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9603546/ https://www.ncbi.nlm.nih.gov/pubmed/36190409 http://dx.doi.org/10.1128/spectrum.01550-22 |
work_keys_str_mv | AT yangling pseudomonasaeruginosainducesinterferonbproductiontopromoteintracellularsurvival AT zhangyuwei pseudomonasaeruginosainducesinterferonbproductiontopromoteintracellularsurvival AT liuyang pseudomonasaeruginosainducesinterferonbproductiontopromoteintracellularsurvival AT xieyingzhou pseudomonasaeruginosainducesinterferonbproductiontopromoteintracellularsurvival AT wengdong pseudomonasaeruginosainducesinterferonbproductiontopromoteintracellularsurvival AT gebaoxue pseudomonasaeruginosainducesinterferonbproductiontopromoteintracellularsurvival AT liuhaipeng pseudomonasaeruginosainducesinterferonbproductiontopromoteintracellularsurvival AT xujinfu pseudomonasaeruginosainducesinterferonbproductiontopromoteintracellularsurvival |