Cargando…

Emotional-Health-Oriented Urban Design: A Novel Collaborative Deep Learning Framework for Real-Time Landscape Assessment by Integrating Facial Expression Recognition and Pixel-Level Semantic Segmentation

Emotional responses are significant for understanding public perceptions of urban green space (UGS) and can be used to inform proposals for optimal urban design strategies to enhance public emotional health in the times of COVID-19. However, most empirical studies fail to consider emotion-oriented l...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Xuan, Han, Haoying, Qiao, Lin, Zhuang, Jingwei, Ren, Ziming, Su, Yang, Xia, Yiping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9603572/
https://www.ncbi.nlm.nih.gov/pubmed/36293893
http://dx.doi.org/10.3390/ijerph192013308
Descripción
Sumario:Emotional responses are significant for understanding public perceptions of urban green space (UGS) and can be used to inform proposals for optimal urban design strategies to enhance public emotional health in the times of COVID-19. However, most empirical studies fail to consider emotion-oriented landscape assessments under dynamic perspectives despite the fact that individually observed sceneries alter with angle. To close this gap, a real-time sentimental-based landscape assessment framework is developed, integrating facial expression recognition with semantic segmentation of changing landscapes. Furthermore, a case study using panoramic videos converted from Google Street View images to simulate changing scenes was used to test the viability of this framework, resulting in five million big data points. The result of this study shows that through the collaboration of deep learning algorithms, finer visual variables were classified, subtle emotional responses were tracked, and better regression results for valence and arousal were obtained. Among all the predictors, the proportion of grass was the most significant predictor for emotional perception. The proposed framework is adaptable and human-centric, and it enables the instantaneous emotional perception of the built environment by the general public as a feedback survey tool to aid urban planners in creating UGS that promote emotional well-being.