Cargando…
Synthesis of Lightweight Renewable Microwave-Absorbing Bio-Polyurethane/Fe(3)O(4) Composite Foam: Structure Analysis and Absorption Mechanism
Sustainable renewable polymer foam used as a lightweight porous skeleton for microwave absorption is a novel strategy that can effectively solve the problems of the large surface density, high additive amount, and narrow absorbing band of absorbing materials. In this article, novel renewable microwa...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9603621/ https://www.ncbi.nlm.nih.gov/pubmed/36293150 http://dx.doi.org/10.3390/ijms232012301 |
_version_ | 1784817602309128192 |
---|---|
author | Xu, Xiaoling Tian, Xiaoke Bo, Guangxu Su, Xingjian Yan, Jinyong Yan, Yunjun |
author_facet | Xu, Xiaoling Tian, Xiaoke Bo, Guangxu Su, Xingjian Yan, Jinyong Yan, Yunjun |
author_sort | Xu, Xiaoling |
collection | PubMed |
description | Sustainable renewable polymer foam used as a lightweight porous skeleton for microwave absorption is a novel strategy that can effectively solve the problems of the large surface density, high additive amount, and narrow absorbing band of absorbing materials. In this article, novel renewable microwave-absorbing foams were prepared using Sapiumse biferum kernel oil-based polyurethane foam (BPUF) as porous matrix and Fe(3)O(4)-nanoparticles as magnetic absorbents. The microstructure and the microwave absorption performance, the structural effects on the properties, and electromagnetic mechanism of the magnetic BPUF (mBPUF) were systematically characterized and analyzed. The results show that the mBPUF displayed a porous hierarchical structure and was multi-interfacial, which provided a skeleton and matching layer for the Fe(3)O(4) nanoparticles. The effective reflection loss (RL ≤ −10 dB) frequency of the mBPUF was from 4.16 GHz to 18 GHz with only 9 wt% content of Fe(3)O(4) nanoparticles at a thickness of 1.5~5 mm. The surface density of the mBPUF coatings was less than 0.5 kg/cm(2) at a thickness of 1.8 mm. The lightweight characteristics and broadband absorption were attributed to the porous hierarchical structures and the dielectric combined with the magnetic loss effect. It indicates that the mBPUF is a prospective broadband-absorbing material in the field of lightweight stealth materials. |
format | Online Article Text |
id | pubmed-9603621 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96036212022-10-27 Synthesis of Lightweight Renewable Microwave-Absorbing Bio-Polyurethane/Fe(3)O(4) Composite Foam: Structure Analysis and Absorption Mechanism Xu, Xiaoling Tian, Xiaoke Bo, Guangxu Su, Xingjian Yan, Jinyong Yan, Yunjun Int J Mol Sci Article Sustainable renewable polymer foam used as a lightweight porous skeleton for microwave absorption is a novel strategy that can effectively solve the problems of the large surface density, high additive amount, and narrow absorbing band of absorbing materials. In this article, novel renewable microwave-absorbing foams were prepared using Sapiumse biferum kernel oil-based polyurethane foam (BPUF) as porous matrix and Fe(3)O(4)-nanoparticles as magnetic absorbents. The microstructure and the microwave absorption performance, the structural effects on the properties, and electromagnetic mechanism of the magnetic BPUF (mBPUF) were systematically characterized and analyzed. The results show that the mBPUF displayed a porous hierarchical structure and was multi-interfacial, which provided a skeleton and matching layer for the Fe(3)O(4) nanoparticles. The effective reflection loss (RL ≤ −10 dB) frequency of the mBPUF was from 4.16 GHz to 18 GHz with only 9 wt% content of Fe(3)O(4) nanoparticles at a thickness of 1.5~5 mm. The surface density of the mBPUF coatings was less than 0.5 kg/cm(2) at a thickness of 1.8 mm. The lightweight characteristics and broadband absorption were attributed to the porous hierarchical structures and the dielectric combined with the magnetic loss effect. It indicates that the mBPUF is a prospective broadband-absorbing material in the field of lightweight stealth materials. MDPI 2022-10-14 /pmc/articles/PMC9603621/ /pubmed/36293150 http://dx.doi.org/10.3390/ijms232012301 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Xu, Xiaoling Tian, Xiaoke Bo, Guangxu Su, Xingjian Yan, Jinyong Yan, Yunjun Synthesis of Lightweight Renewable Microwave-Absorbing Bio-Polyurethane/Fe(3)O(4) Composite Foam: Structure Analysis and Absorption Mechanism |
title | Synthesis of Lightweight Renewable Microwave-Absorbing Bio-Polyurethane/Fe(3)O(4) Composite Foam: Structure Analysis and Absorption Mechanism |
title_full | Synthesis of Lightweight Renewable Microwave-Absorbing Bio-Polyurethane/Fe(3)O(4) Composite Foam: Structure Analysis and Absorption Mechanism |
title_fullStr | Synthesis of Lightweight Renewable Microwave-Absorbing Bio-Polyurethane/Fe(3)O(4) Composite Foam: Structure Analysis and Absorption Mechanism |
title_full_unstemmed | Synthesis of Lightweight Renewable Microwave-Absorbing Bio-Polyurethane/Fe(3)O(4) Composite Foam: Structure Analysis and Absorption Mechanism |
title_short | Synthesis of Lightweight Renewable Microwave-Absorbing Bio-Polyurethane/Fe(3)O(4) Composite Foam: Structure Analysis and Absorption Mechanism |
title_sort | synthesis of lightweight renewable microwave-absorbing bio-polyurethane/fe(3)o(4) composite foam: structure analysis and absorption mechanism |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9603621/ https://www.ncbi.nlm.nih.gov/pubmed/36293150 http://dx.doi.org/10.3390/ijms232012301 |
work_keys_str_mv | AT xuxiaoling synthesisoflightweightrenewablemicrowaveabsorbingbiopolyurethanefe3o4compositefoamstructureanalysisandabsorptionmechanism AT tianxiaoke synthesisoflightweightrenewablemicrowaveabsorbingbiopolyurethanefe3o4compositefoamstructureanalysisandabsorptionmechanism AT boguangxu synthesisoflightweightrenewablemicrowaveabsorbingbiopolyurethanefe3o4compositefoamstructureanalysisandabsorptionmechanism AT suxingjian synthesisoflightweightrenewablemicrowaveabsorbingbiopolyurethanefe3o4compositefoamstructureanalysisandabsorptionmechanism AT yanjinyong synthesisoflightweightrenewablemicrowaveabsorbingbiopolyurethanefe3o4compositefoamstructureanalysisandabsorptionmechanism AT yanyunjun synthesisoflightweightrenewablemicrowaveabsorbingbiopolyurethanefe3o4compositefoamstructureanalysisandabsorptionmechanism |