Cargando…

Structural and functional analysis of SNP rs76740365 G>A in exon-3 of the alpha A-crystallin gene in lens epithelial cells

PURPOSE: To clarify the effect of a previously identified single nucleotide polymorphism (SNP; rs76740365 G>A) in the exon-3 of the alpha A-crystallin (CRYAA) gene on the properties of CRYAA and to investigate its function in human lens epithelial cells (HLECs). METHODS: The human recombinant wil...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Zhennan, Sun, Yang, Fan, Qi, Jiang, Yongxiang, Lu, Yi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Vision 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9603911/
https://www.ncbi.nlm.nih.gov/pubmed/36338667
_version_ 1784817675731468288
author Zhao, Zhennan
Sun, Yang
Fan, Qi
Jiang, Yongxiang
Lu, Yi
author_facet Zhao, Zhennan
Sun, Yang
Fan, Qi
Jiang, Yongxiang
Lu, Yi
author_sort Zhao, Zhennan
collection PubMed
description PURPOSE: To clarify the effect of a previously identified single nucleotide polymorphism (SNP; rs76740365 G>A) in the exon-3 of the alpha A-crystallin (CRYAA) gene on the properties of CRYAA and to investigate its function in human lens epithelial cells (HLECs). METHODS: The human recombinant wild-type and mutant CRYAA (E156K) were constructed, and the molecular weight was measured by mass spectrometry. The structural changes induced by E156K mutation were analyzed by UV circular dichroism spectra and intrinsic tryptophan fluorescence and were predicted using Schrödinger software. The chaperone-like ability of wild-type and E156K mutant CRYAA was invested against the heat-induced aggregation of βL-crystallin and the DTT-induced aggregation of insulin. HLECs expressing wild-type and mutated CRYAA were subjected to quantitative PCR (qPCR) and western blot. Cell apoptosis was determined using flow cytometry analysis, and the expression of apoptosis-related proteins were determined using western blot. RESULTS: The mass spectrometric detection revealed that E156K mutation had no significant effect on the apparent molecular mass of the CRYAA oligomeric complex. Evaluation of the structures of the CRYAA indicated that E156K mutation did not significantly affect the secondary structures, while causing perturbations of the tertiary structure. The mutant CRYAA displayed an increase in chaperone-like activity, which might be related to the increase of the surface hydrophobicity. We also predicted that E156K mutation would induce a change from negatively charged surface to positively charged, which was the possible reason for the disturbance to the surface hydrophobicity. Transfection studies of HLECs revealed that the E156K mutant induced anti-apoptotic function in HLECs, which was possibly associated with the activation of the p-AKT signal pathway and downregulation of Casepase3. CONCLUSIONS: Taken together, our results for the first time showed that E156K mutation in CRYAA associated with ARC resulted in enhanced chaperone-like function by inducing its surface hydrophobicity, which was directly related to the activation of its anti-apoptotic function.
format Online
Article
Text
id pubmed-9603911
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Molecular Vision
record_format MEDLINE/PubMed
spelling pubmed-96039112022-11-03 Structural and functional analysis of SNP rs76740365 G>A in exon-3 of the alpha A-crystallin gene in lens epithelial cells Zhao, Zhennan Sun, Yang Fan, Qi Jiang, Yongxiang Lu, Yi Mol Vis Research Article PURPOSE: To clarify the effect of a previously identified single nucleotide polymorphism (SNP; rs76740365 G>A) in the exon-3 of the alpha A-crystallin (CRYAA) gene on the properties of CRYAA and to investigate its function in human lens epithelial cells (HLECs). METHODS: The human recombinant wild-type and mutant CRYAA (E156K) were constructed, and the molecular weight was measured by mass spectrometry. The structural changes induced by E156K mutation were analyzed by UV circular dichroism spectra and intrinsic tryptophan fluorescence and were predicted using Schrödinger software. The chaperone-like ability of wild-type and E156K mutant CRYAA was invested against the heat-induced aggregation of βL-crystallin and the DTT-induced aggregation of insulin. HLECs expressing wild-type and mutated CRYAA were subjected to quantitative PCR (qPCR) and western blot. Cell apoptosis was determined using flow cytometry analysis, and the expression of apoptosis-related proteins were determined using western blot. RESULTS: The mass spectrometric detection revealed that E156K mutation had no significant effect on the apparent molecular mass of the CRYAA oligomeric complex. Evaluation of the structures of the CRYAA indicated that E156K mutation did not significantly affect the secondary structures, while causing perturbations of the tertiary structure. The mutant CRYAA displayed an increase in chaperone-like activity, which might be related to the increase of the surface hydrophobicity. We also predicted that E156K mutation would induce a change from negatively charged surface to positively charged, which was the possible reason for the disturbance to the surface hydrophobicity. Transfection studies of HLECs revealed that the E156K mutant induced anti-apoptotic function in HLECs, which was possibly associated with the activation of the p-AKT signal pathway and downregulation of Casepase3. CONCLUSIONS: Taken together, our results for the first time showed that E156K mutation in CRYAA associated with ARC resulted in enhanced chaperone-like function by inducing its surface hydrophobicity, which was directly related to the activation of its anti-apoptotic function. Molecular Vision 2022-10-01 /pmc/articles/PMC9603911/ /pubmed/36338667 Text en Copyright © 2022 Molecular Vision. https://creativecommons.org/licenses/by-nc-nd/3.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited, used for non-commercial purposes, and is not altered or transformed.
spellingShingle Research Article
Zhao, Zhennan
Sun, Yang
Fan, Qi
Jiang, Yongxiang
Lu, Yi
Structural and functional analysis of SNP rs76740365 G>A in exon-3 of the alpha A-crystallin gene in lens epithelial cells
title Structural and functional analysis of SNP rs76740365 G>A in exon-3 of the alpha A-crystallin gene in lens epithelial cells
title_full Structural and functional analysis of SNP rs76740365 G>A in exon-3 of the alpha A-crystallin gene in lens epithelial cells
title_fullStr Structural and functional analysis of SNP rs76740365 G>A in exon-3 of the alpha A-crystallin gene in lens epithelial cells
title_full_unstemmed Structural and functional analysis of SNP rs76740365 G>A in exon-3 of the alpha A-crystallin gene in lens epithelial cells
title_short Structural and functional analysis of SNP rs76740365 G>A in exon-3 of the alpha A-crystallin gene in lens epithelial cells
title_sort structural and functional analysis of snp rs76740365 g>a in exon-3 of the alpha a-crystallin gene in lens epithelial cells
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9603911/
https://www.ncbi.nlm.nih.gov/pubmed/36338667
work_keys_str_mv AT zhaozhennan structuralandfunctionalanalysisofsnprs76740365gainexon3ofthealphaacrystallingeneinlensepithelialcells
AT sunyang structuralandfunctionalanalysisofsnprs76740365gainexon3ofthealphaacrystallingeneinlensepithelialcells
AT fanqi structuralandfunctionalanalysisofsnprs76740365gainexon3ofthealphaacrystallingeneinlensepithelialcells
AT jiangyongxiang structuralandfunctionalanalysisofsnprs76740365gainexon3ofthealphaacrystallingeneinlensepithelialcells
AT luyi structuralandfunctionalanalysisofsnprs76740365gainexon3ofthealphaacrystallingeneinlensepithelialcells