Cargando…

Kidney Cyst Lining Epithelial Cells Are Resistant to Low-Dose Cisplatin-Induced DNA Damage in a Preclinical Model of Autosomal Dominant Polycystic Kidney Disease

Increased DNA damage response (DDR) signaling in kidney cyst-lining epithelial cells (CECs) may provide an opportunity for cell-specific therapeutic targeting in autosomal dominant polycystic kidney disease (ADPKD). We hypothesized that inhibiting ataxia telangiectasia mutated (ATM; a proximal DDR k...

Descripción completa

Detalles Bibliográficos
Autores principales: Saravanabavan, Sayanthooran, Rangan, Gopala K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9603998/
https://www.ncbi.nlm.nih.gov/pubmed/36293397
http://dx.doi.org/10.3390/ijms232012547
_version_ 1784817699558260736
author Saravanabavan, Sayanthooran
Rangan, Gopala K.
author_facet Saravanabavan, Sayanthooran
Rangan, Gopala K.
author_sort Saravanabavan, Sayanthooran
collection PubMed
description Increased DNA damage response (DDR) signaling in kidney cyst-lining epithelial cells (CECs) may provide an opportunity for cell-specific therapeutic targeting in autosomal dominant polycystic kidney disease (ADPKD). We hypothesized that inhibiting ataxia telangiectasia mutated (ATM; a proximal DDR kinase) together with low-dose cisplatin overwhelms the DDR response and leads to selective apoptosis of cyst-lining epithelial cells (CECs). Pkd1(RC/RC)/Atm(+/−) mice were treated with either vehicle or a single low-dose cisplatin, and the acute effects on CECs (DNA damage and apoptosis) after 72 h and chronic effects on progression (cyst size, inflammation, fibrosis) after 3 weeks were investigated. At 72 h, cisplatin caused a dose-dependent increase in γH2AX-positive nuclei in both CECs and non-cystic tubules but did not cause selective apoptosis in Pkd1(RC/RC)/Atm(+/−) mice. Moreover, the increase in γH2AX-positive nuclei was 1.7-fold lower in CECs compared to non-cystic epithelial cells (p < 0.05). Low-dose cisplatin also did not alter long-term disease progression in Pkd1(RC/RC)/Atm(+/−) mice. In vitro, human ADPKD cyst-derived cell lines were also resistant to cisplatin (WT9-12: 61.7 ± 4.6%; WT9-7: 64.8 ± 2.7% cell viability) compared to HK-2 (25.1 ± 4.2%), and 3D cyst growth in MDCK cells was not altered. Finally, combined low-dose cisplatin with AZD0156 (an ATM inhibitor) non-selectively reduced γH2AX in both cystic and non-cystic tubular cells and exacerbated cystic kidney disease. In conclusion, these data suggest that CECs are resistant to DNA damage, and that the combination of cisplatin with ATM inhibitors is not an effective strategy for selectively eliminating kidney cysts in ADPKD.
format Online
Article
Text
id pubmed-9603998
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-96039982022-10-27 Kidney Cyst Lining Epithelial Cells Are Resistant to Low-Dose Cisplatin-Induced DNA Damage in a Preclinical Model of Autosomal Dominant Polycystic Kidney Disease Saravanabavan, Sayanthooran Rangan, Gopala K. Int J Mol Sci Article Increased DNA damage response (DDR) signaling in kidney cyst-lining epithelial cells (CECs) may provide an opportunity for cell-specific therapeutic targeting in autosomal dominant polycystic kidney disease (ADPKD). We hypothesized that inhibiting ataxia telangiectasia mutated (ATM; a proximal DDR kinase) together with low-dose cisplatin overwhelms the DDR response and leads to selective apoptosis of cyst-lining epithelial cells (CECs). Pkd1(RC/RC)/Atm(+/−) mice were treated with either vehicle or a single low-dose cisplatin, and the acute effects on CECs (DNA damage and apoptosis) after 72 h and chronic effects on progression (cyst size, inflammation, fibrosis) after 3 weeks were investigated. At 72 h, cisplatin caused a dose-dependent increase in γH2AX-positive nuclei in both CECs and non-cystic tubules but did not cause selective apoptosis in Pkd1(RC/RC)/Atm(+/−) mice. Moreover, the increase in γH2AX-positive nuclei was 1.7-fold lower in CECs compared to non-cystic epithelial cells (p < 0.05). Low-dose cisplatin also did not alter long-term disease progression in Pkd1(RC/RC)/Atm(+/−) mice. In vitro, human ADPKD cyst-derived cell lines were also resistant to cisplatin (WT9-12: 61.7 ± 4.6%; WT9-7: 64.8 ± 2.7% cell viability) compared to HK-2 (25.1 ± 4.2%), and 3D cyst growth in MDCK cells was not altered. Finally, combined low-dose cisplatin with AZD0156 (an ATM inhibitor) non-selectively reduced γH2AX in both cystic and non-cystic tubular cells and exacerbated cystic kidney disease. In conclusion, these data suggest that CECs are resistant to DNA damage, and that the combination of cisplatin with ATM inhibitors is not an effective strategy for selectively eliminating kidney cysts in ADPKD. MDPI 2022-10-19 /pmc/articles/PMC9603998/ /pubmed/36293397 http://dx.doi.org/10.3390/ijms232012547 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Saravanabavan, Sayanthooran
Rangan, Gopala K.
Kidney Cyst Lining Epithelial Cells Are Resistant to Low-Dose Cisplatin-Induced DNA Damage in a Preclinical Model of Autosomal Dominant Polycystic Kidney Disease
title Kidney Cyst Lining Epithelial Cells Are Resistant to Low-Dose Cisplatin-Induced DNA Damage in a Preclinical Model of Autosomal Dominant Polycystic Kidney Disease
title_full Kidney Cyst Lining Epithelial Cells Are Resistant to Low-Dose Cisplatin-Induced DNA Damage in a Preclinical Model of Autosomal Dominant Polycystic Kidney Disease
title_fullStr Kidney Cyst Lining Epithelial Cells Are Resistant to Low-Dose Cisplatin-Induced DNA Damage in a Preclinical Model of Autosomal Dominant Polycystic Kidney Disease
title_full_unstemmed Kidney Cyst Lining Epithelial Cells Are Resistant to Low-Dose Cisplatin-Induced DNA Damage in a Preclinical Model of Autosomal Dominant Polycystic Kidney Disease
title_short Kidney Cyst Lining Epithelial Cells Are Resistant to Low-Dose Cisplatin-Induced DNA Damage in a Preclinical Model of Autosomal Dominant Polycystic Kidney Disease
title_sort kidney cyst lining epithelial cells are resistant to low-dose cisplatin-induced dna damage in a preclinical model of autosomal dominant polycystic kidney disease
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9603998/
https://www.ncbi.nlm.nih.gov/pubmed/36293397
http://dx.doi.org/10.3390/ijms232012547
work_keys_str_mv AT saravanabavansayanthooran kidneycystliningepithelialcellsareresistanttolowdosecisplatininduceddnadamageinapreclinicalmodelofautosomaldominantpolycystickidneydisease
AT rangangopalak kidneycystliningepithelialcellsareresistanttolowdosecisplatininduceddnadamageinapreclinicalmodelofautosomaldominantpolycystickidneydisease