Cargando…
PD-BertEDL: An Ensemble Deep Learning Method Using BERT and Multivariate Representation to Predict Peptide Detectability
Peptide detectability is defined as the probability of identifying a peptide from a mixture of standard samples, which is a key step in protein identification and analysis. Exploring effective methods for predicting peptide detectability is helpful for disease treatment and clinical research. Howeve...
Autores principales: | Wang, Huiqing, Wang, Juan, Feng, Zhipeng, Li, Ying, Zhao, Hong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9604182/ https://www.ncbi.nlm.nih.gov/pubmed/36293242 http://dx.doi.org/10.3390/ijms232012385 |
Ejemplares similares
-
IUP-BERT: Identification of Umami Peptides Based on BERT Features
por: Jiang, Liangzhen, et al.
Publicado: (2022) -
To BERT or Not to BERT Dealing with Possible BERT Failures in an Entailment Task
por: Fialho, Pedro, et al.
Publicado: (2020) -
FakeBERT: Fake news detection in social media with a BERT-based deep learning approach
por: Kaliyar, Rohit Kumar, et al.
Publicado: (2021) -
DTI-BERT: Identifying Drug-Target Interactions in Cellular Networking Based on BERT and Deep Learning Method
por: Zheng, Jie, et al.
Publicado: (2022) -
The performance of BERT as data representation of text clustering
por: Subakti, Alvin, et al.
Publicado: (2022)