Cargando…

Enhanced Flame Retardancy of Rigid Polyurethane Foams by Polyacrylamide/MXene Hydrogel Nanocomposite Coating

Rigid polyurethane foam (RPUF) has been widely used in many fields, but its high flammability and frequent release of large amounts of toxic smoke during combustion limit its application. Hydrogel coatings, as a kind of environmentally friendly material, contain large amounts of water, which is bene...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Bin, Yang, Lizhong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9604204/
https://www.ncbi.nlm.nih.gov/pubmed/36293481
http://dx.doi.org/10.3390/ijms232012632
_version_ 1784817754750058496
author Chen, Bin
Yang, Lizhong
author_facet Chen, Bin
Yang, Lizhong
author_sort Chen, Bin
collection PubMed
description Rigid polyurethane foam (RPUF) has been widely used in many fields, but its high flammability and frequent release of large amounts of toxic smoke during combustion limit its application. Hydrogel coatings, as a kind of environmentally friendly material, contain large amounts of water, which is beneficial to flame retardance of RPUF. MXene, as a two-dimensional inorganic nanomaterial, possesses a large specific surface area and good thermal stability, performing well in smoke suppression and as a physical barrier for flammable gas products and heat. Herein, to address the fire hazards of RPUF, MXene nanosheets were first grafted with double bonds, and then introduced into a polyacrylamide hydrogel system by radical polymerization to prepare MXene-based hydrogel coating (PAAm-MXene). The flame-retardant RPUF (coated RPUF) was prepared by painting the PAAm-MXene coating onto RPUF surface. The dispersion of modified MXene nanosheets (m-MXene) in hydrogels is improved compared with pristine MXene, and the addition of m-MXene contributes to the thermal stability enhancement of PAAm-MXene. Cone calorimetry, water retention test, and open flame combustion test were used to study the flame retardancy, smoke suppression, and water retention of flame-retardant RPUF. The coated RPUF exhibited significant flame retardancy, including reduced peak heat release rate (pHRR) at a maximum by 25.8%, and total heat release rate (THR) at a maximum by 24.6%, and total smoke production at a maximum by 38.9%. The results show that both MXene and m-MXene can improve the flame retardancy, smoke suppression, and water retention of hydrogels, but m-MXene has a better smoke suppression effect than MXene. That can be ascribed to the better dispersion of m-MXene than pristine MXene. The detailed performance improvement mechanisms are proposed. This work will not only improve the flame retardancy of RPUF, but also promotes the exploration of new flame-retardant strategies for RPUF.
format Online
Article
Text
id pubmed-9604204
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-96042042022-10-27 Enhanced Flame Retardancy of Rigid Polyurethane Foams by Polyacrylamide/MXene Hydrogel Nanocomposite Coating Chen, Bin Yang, Lizhong Int J Mol Sci Article Rigid polyurethane foam (RPUF) has been widely used in many fields, but its high flammability and frequent release of large amounts of toxic smoke during combustion limit its application. Hydrogel coatings, as a kind of environmentally friendly material, contain large amounts of water, which is beneficial to flame retardance of RPUF. MXene, as a two-dimensional inorganic nanomaterial, possesses a large specific surface area and good thermal stability, performing well in smoke suppression and as a physical barrier for flammable gas products and heat. Herein, to address the fire hazards of RPUF, MXene nanosheets were first grafted with double bonds, and then introduced into a polyacrylamide hydrogel system by radical polymerization to prepare MXene-based hydrogel coating (PAAm-MXene). The flame-retardant RPUF (coated RPUF) was prepared by painting the PAAm-MXene coating onto RPUF surface. The dispersion of modified MXene nanosheets (m-MXene) in hydrogels is improved compared with pristine MXene, and the addition of m-MXene contributes to the thermal stability enhancement of PAAm-MXene. Cone calorimetry, water retention test, and open flame combustion test were used to study the flame retardancy, smoke suppression, and water retention of flame-retardant RPUF. The coated RPUF exhibited significant flame retardancy, including reduced peak heat release rate (pHRR) at a maximum by 25.8%, and total heat release rate (THR) at a maximum by 24.6%, and total smoke production at a maximum by 38.9%. The results show that both MXene and m-MXene can improve the flame retardancy, smoke suppression, and water retention of hydrogels, but m-MXene has a better smoke suppression effect than MXene. That can be ascribed to the better dispersion of m-MXene than pristine MXene. The detailed performance improvement mechanisms are proposed. This work will not only improve the flame retardancy of RPUF, but also promotes the exploration of new flame-retardant strategies for RPUF. MDPI 2022-10-20 /pmc/articles/PMC9604204/ /pubmed/36293481 http://dx.doi.org/10.3390/ijms232012632 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Chen, Bin
Yang, Lizhong
Enhanced Flame Retardancy of Rigid Polyurethane Foams by Polyacrylamide/MXene Hydrogel Nanocomposite Coating
title Enhanced Flame Retardancy of Rigid Polyurethane Foams by Polyacrylamide/MXene Hydrogel Nanocomposite Coating
title_full Enhanced Flame Retardancy of Rigid Polyurethane Foams by Polyacrylamide/MXene Hydrogel Nanocomposite Coating
title_fullStr Enhanced Flame Retardancy of Rigid Polyurethane Foams by Polyacrylamide/MXene Hydrogel Nanocomposite Coating
title_full_unstemmed Enhanced Flame Retardancy of Rigid Polyurethane Foams by Polyacrylamide/MXene Hydrogel Nanocomposite Coating
title_short Enhanced Flame Retardancy of Rigid Polyurethane Foams by Polyacrylamide/MXene Hydrogel Nanocomposite Coating
title_sort enhanced flame retardancy of rigid polyurethane foams by polyacrylamide/mxene hydrogel nanocomposite coating
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9604204/
https://www.ncbi.nlm.nih.gov/pubmed/36293481
http://dx.doi.org/10.3390/ijms232012632
work_keys_str_mv AT chenbin enhancedflameretardancyofrigidpolyurethanefoamsbypolyacrylamidemxenehydrogelnanocompositecoating
AT yanglizhong enhancedflameretardancyofrigidpolyurethanefoamsbypolyacrylamidemxenehydrogelnanocompositecoating