Cargando…
Molecular Characterization and Drought Resistance of GmNAC3 Transcription Factor in Glycine max (L.) Merr.
Soybean transcription factor GmNAC plays important roles in plant resistance to environmental stresses. In this study, GmNAC3 was cloned in the drought tolerant soybean variety “Jiyu47”, with the molecular properties of GmNAC3 characterized to establish its candidacy as a NAC transcription factor. T...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9604218/ https://www.ncbi.nlm.nih.gov/pubmed/36293235 http://dx.doi.org/10.3390/ijms232012378 |
_version_ | 1784817758271176704 |
---|---|
author | Chen, Zhanyu Yang, Xiaoqin Tang, Minghao Wang, Yujue Zhang, Qian Li, Huiying Zhou, Ying Sun, Fengjie Cui, Xiyan |
author_facet | Chen, Zhanyu Yang, Xiaoqin Tang, Minghao Wang, Yujue Zhang, Qian Li, Huiying Zhou, Ying Sun, Fengjie Cui, Xiyan |
author_sort | Chen, Zhanyu |
collection | PubMed |
description | Soybean transcription factor GmNAC plays important roles in plant resistance to environmental stresses. In this study, GmNAC3 was cloned in the drought tolerant soybean variety “Jiyu47”, with the molecular properties of GmNAC3 characterized to establish its candidacy as a NAC transcription factor. The yeast self-activation experiments revealed the transcriptional activation activity of GmNAC3, which was localized in the nucleus by the subcellular localization analysis. The highest expression of GmNAC3 was detected in roots in the podding stage of soybean, and in roots of soybean seedlings treated with 20% PEG6000 for 12 h, which was 16 times higher compared with the control. In the transgenic soybean hairy roots obtained by the Agrobacterium-mediated method treated with 20% PEG6000 for 12 h, the activities of superoxide dismutase, peroxidase, and catalase and the content of proline were increased, the malondialdehyde content was decreased, and the expressions of stress resistance-related genes (i.e., APX2, LEA14, 6PGDH, and P5CS) were up-regulated. These expression patterns were confirmed by transgenic Arabidopsis thaliana with the overexpression of GmNAC3. This study provided strong scientific evidence to support further investigation of the regulatory function of GmNAC3 in plant drought resistance and the molecular mechanisms regulating the plant response to environmental stresses. |
format | Online Article Text |
id | pubmed-9604218 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96042182022-10-27 Molecular Characterization and Drought Resistance of GmNAC3 Transcription Factor in Glycine max (L.) Merr. Chen, Zhanyu Yang, Xiaoqin Tang, Minghao Wang, Yujue Zhang, Qian Li, Huiying Zhou, Ying Sun, Fengjie Cui, Xiyan Int J Mol Sci Article Soybean transcription factor GmNAC plays important roles in plant resistance to environmental stresses. In this study, GmNAC3 was cloned in the drought tolerant soybean variety “Jiyu47”, with the molecular properties of GmNAC3 characterized to establish its candidacy as a NAC transcription factor. The yeast self-activation experiments revealed the transcriptional activation activity of GmNAC3, which was localized in the nucleus by the subcellular localization analysis. The highest expression of GmNAC3 was detected in roots in the podding stage of soybean, and in roots of soybean seedlings treated with 20% PEG6000 for 12 h, which was 16 times higher compared with the control. In the transgenic soybean hairy roots obtained by the Agrobacterium-mediated method treated with 20% PEG6000 for 12 h, the activities of superoxide dismutase, peroxidase, and catalase and the content of proline were increased, the malondialdehyde content was decreased, and the expressions of stress resistance-related genes (i.e., APX2, LEA14, 6PGDH, and P5CS) were up-regulated. These expression patterns were confirmed by transgenic Arabidopsis thaliana with the overexpression of GmNAC3. This study provided strong scientific evidence to support further investigation of the regulatory function of GmNAC3 in plant drought resistance and the molecular mechanisms regulating the plant response to environmental stresses. MDPI 2022-10-16 /pmc/articles/PMC9604218/ /pubmed/36293235 http://dx.doi.org/10.3390/ijms232012378 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Chen, Zhanyu Yang, Xiaoqin Tang, Minghao Wang, Yujue Zhang, Qian Li, Huiying Zhou, Ying Sun, Fengjie Cui, Xiyan Molecular Characterization and Drought Resistance of GmNAC3 Transcription Factor in Glycine max (L.) Merr. |
title | Molecular Characterization and Drought Resistance of GmNAC3 Transcription Factor in Glycine max (L.) Merr. |
title_full | Molecular Characterization and Drought Resistance of GmNAC3 Transcription Factor in Glycine max (L.) Merr. |
title_fullStr | Molecular Characterization and Drought Resistance of GmNAC3 Transcription Factor in Glycine max (L.) Merr. |
title_full_unstemmed | Molecular Characterization and Drought Resistance of GmNAC3 Transcription Factor in Glycine max (L.) Merr. |
title_short | Molecular Characterization and Drought Resistance of GmNAC3 Transcription Factor in Glycine max (L.) Merr. |
title_sort | molecular characterization and drought resistance of gmnac3 transcription factor in glycine max (l.) merr. |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9604218/ https://www.ncbi.nlm.nih.gov/pubmed/36293235 http://dx.doi.org/10.3390/ijms232012378 |
work_keys_str_mv | AT chenzhanyu molecularcharacterizationanddroughtresistanceofgmnac3transcriptionfactoringlycinemaxlmerr AT yangxiaoqin molecularcharacterizationanddroughtresistanceofgmnac3transcriptionfactoringlycinemaxlmerr AT tangminghao molecularcharacterizationanddroughtresistanceofgmnac3transcriptionfactoringlycinemaxlmerr AT wangyujue molecularcharacterizationanddroughtresistanceofgmnac3transcriptionfactoringlycinemaxlmerr AT zhangqian molecularcharacterizationanddroughtresistanceofgmnac3transcriptionfactoringlycinemaxlmerr AT lihuiying molecularcharacterizationanddroughtresistanceofgmnac3transcriptionfactoringlycinemaxlmerr AT zhouying molecularcharacterizationanddroughtresistanceofgmnac3transcriptionfactoringlycinemaxlmerr AT sunfengjie molecularcharacterizationanddroughtresistanceofgmnac3transcriptionfactoringlycinemaxlmerr AT cuixiyan molecularcharacterizationanddroughtresistanceofgmnac3transcriptionfactoringlycinemaxlmerr |