Cargando…

A Comparison of RNA Interference via Injection and Feeding in Honey Bees

SIMPLE SUMMARY: RNA interference is an important way to analyze gene function. It is also widely used in honey bees. It was thought that RNA interference with honey bee brain genes could only be achieved by injection. However, this method of injection is very complicated and can easily cause damage...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Yong, Li, Zhen, Wang, Zi-Long, Zhang, Li-Zhen, Zeng, Zhi-Jiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9604379/
https://www.ncbi.nlm.nih.gov/pubmed/36292876
http://dx.doi.org/10.3390/insects13100928
Descripción
Sumario:SIMPLE SUMMARY: RNA interference is an important way to analyze gene function. It is also widely used in honey bees. It was thought that RNA interference with honey bee brain genes could only be achieved by injection. However, this method of injection is very complicated and can easily cause damage to bees. Recent studies have shown that specially treated siRNA can knockdown brain genes in animals by feeding them. Therefore, we used different approaches to deliver modified and unmodified siRNAs to investigate what methods can successfully interfere with honey bee brain genes. The results of this study are helpful to improve the application of RNA interference techniques in honey bees and other insects. ABSTRACT: RNA interference (RNAi) has been used successfully to reduce target gene expression and induce specific phenotypes in several species. It has proved useful as a tool to investigate gene function and has the potential to manage pest populations and reduce disease pathogens. However, it is not known whether different administration methods are equally effective at interfering with genes in bees. Therefore, we compared the effects of feeding and injection of small interfering RNA (siRNA) on the messenger RNA (mRNA) levels of alpha-aminoadipic semialdehyde dehydrogenase (ALDH7A1), 4-coumarate-CoA ligase (4CL), and heat shock protein 70 (HSP70). Both feeding and injection of siRNA successfully knocked down the gene but feeding required more siRNA than the injection. Our results suggest that both feeding and injection of siRNA effectively interfere with brain genes in bees. The appropriateness of each method would depend on the situation.