Cargando…
Attention-Based UNet Deep Learning Model for Plaque Segmentation in Carotid Ultrasound for Stroke Risk Stratification: An Artificial Intelligence Paradigm
Stroke and cardiovascular diseases (CVD) significantly affect the world population. The early detection of such events may prevent the burden of death and costly surgery. Conventional methods are neither automated nor clinically accurate. Artificial Intelligence-based methods of automatically detect...
Autores principales: | Jain, Pankaj K., Dubey, Abhishek, Saba, Luca, Khanna, Narender N., Laird, John R., Nicolaides, Andrew, Fouda, Mostafa M., Suri, Jasjit S., Sharma, Neeraj |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9604424/ https://www.ncbi.nlm.nih.gov/pubmed/36286278 http://dx.doi.org/10.3390/jcdd9100326 |
Ejemplares similares
-
Unseen Artificial Intelligence—Deep Learning Paradigm for Segmentation of Low Atherosclerotic Plaque in Carotid Ultrasound: A Multicenter Cardiovascular Study
por: Jain, Pankaj K., et al.
Publicado: (2021) -
Attention-Enabled Ensemble Deep Learning Models and Their Validation for Depression Detection: A Domain Adoption Paradigm
por: Singh, Jaskaran, et al.
Publicado: (2023) -
Ten Fast Transfer Learning Models for Carotid Ultrasound Plaque Tissue Characterization in Augmentation Framework Embedded with Heatmaps for Stroke Risk Stratification
por: Sanagala, Skandha S., et al.
Publicado: (2021) -
Multimodality carotid plaque tissue characterization and classification in the artificial intelligence paradigm: a narrative review for stroke application
por: Saba, Luca, et al.
Publicado: (2021) -
CT imaging features of carotid artery plaque vulnerability
por: Murgia, Alessandro, et al.
Publicado: (2020)